Iron/manganese ratio and manganese content in shield lavas from Koʻolau Volcano, Hawaiʻi

Shichun Huang a,b,* , Munir Humayun a,b , Frederick A. Frey c

a National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, USA
b Department of Geological Sciences, Florida State University, 108 Carraray Bldg., Tallahassee, FL 32306, USA
c Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass Ave., Cambridge, MA 02139, USA

Received 29 December 2006; accepted in revised form 9 July 2007; available online 6 August 2007

Abstract

Precise Fe/Mn ratios and MnO contents have been determined for basalts from the Hawaiian shields of Koʻolau and Kiluaea by inductively coupled plasma mass spectrometry. It is well known that the youngest Koʻolau (Makapuu’-stage) shield lavas define a geochemical endmember for Hawaiian lavas in terms of CaO and SiO2 contents and isotopic ratios of O, Sr, Nd, Hf, Pb, and Os. We find that their MnO content is also distinct. Despite the small range in MnO, 0.146 to 0.176 wt%, the precision of our data is sufficient to show that among unaltered Koʻolau lavas MnO content is correlated with Nd–Hf–Pb isotopic ratios, La/Nb and Al2O3/CaO elemental ratios, and contents of SiO2, MgO, and Na2O, K2O adjusted for olivine fractionation. These trends are consistent with two-component mixing; one endmember is a SiO2-poor dacite or andesite melt, generated by low degree (10–20%) partial melting of eclogite. Since this low-MgO endmember (dacite or andesite melt) has very low FeO and MnO contents, mixing of high Fe/Mn dacite or andesite melt with a MgO-rich picritic melt, the other endmember, does not significantly increase the Fe/Mn in mixed magmas; consequently, Koʻolau and Kiluaea lavas have similar Fe/Mn. We conclude that the high Fe/Mn in Hawaiian lavas relative to mid-ocean ridge basalt originates from the high MgO endmember in Hawaiian lavas. © 2007 Elsevier Ltd. All rights reserved.

1. INTRODUCTION

Hawaiian volcanism has been extensively studied (e.g., Decker et al., 1987; Special Section of Hawai‘i Scientific Drilling Project in J. Geophys. Res., Vol. 101, pp 11593–11864, 1996; Theme of Hawai‘i Scientific Drilling Project in Geochem. Geophys. Geosyst. 2003). Currently there is debate about the role of eclogite (or garnet pyroxenite) in the source of Hawaiian shield lavas, presumably the Hawaiian plume (e.g., Hauri, 1996; Lassiter and Hauri, 1998; Norman and Garcia, 1999; Stracke et al., 1999; Takahashi and Nakajima, 2002; Pertermann and Hirschmann, 2003; Huang and Frey, 2005; Ren et al., 2005; Sobolev et al., 2005, 2007; Herzberg, 2006; Salters et al., 2006). In this debate, Koʻolau lavas play a central role. Among Hawaiian shields, Makapuu’-stage Koʻolau lavas are characterized by the highest SiO2 content, La/Nb, 87Sr/86Sr, 206Pb/204Pb, and 18O/16O, and lowest CaO content, Nd/144Nd, Hf/177Hf, and 206Pb/204Pb. In detail, the olivine-adjusted SiO2 contents in Koʻolau lavas are correlated with radiogenic isotopic ratios (Huang and Frey, 2005). These distinctive geochemical characteristics of Makapuu’-stage Koʻolau lavas have been proposed to be signatures of a dacite endmember, derived as partial melt of eclogite formed from recycled oceanic crust (MORB and sediments) in the Hawaiian plume (Frey and Rhodes, 1993; Frey et al., 1994; Hauri, 1996; Lassiter and Hauri, 1998; Blichert-Toft et al., 1999; Takahashi and Nakajima, 2002; Huang and Frey, 2005; Huang et al., 2005; Sobolev et al., 2005, 2007). However, the hypothesis that a dacite endmember is important in Hawaiian shield, especially
Ko‘olau lavas has been questioned on petrological and geochemical grounds (e.g., Norman and García, 1999; Stracke et al., 1999; Pertermann and Hirschmann, 2003; Pertermann et al., 2004; Salters et al., 2006; Sobolev et al., 2007).

We use Fe/Mn and MnO abundance to evaluate the role of eclogite in the source of Ko‘olau lavas. Manganese, as MnO, is a minor element in igneous rocks. It is moderately incompatible during peridotite melting at high pressure (>3 GPa, Beattie, 1994; Walter, 1998; Humayun et al., 2004), and highly compatible during eclogite melting (Pertermann and Hirschmann, 2003). Consequently, partial melts of eclogite have lower MnO content than partial melts of peridotite. For example, adakites with >60% SiO2, which are proposed as partial melts of the eclogitic portions of subducting slabs, have very low MnO content (0.05%) (Yogodzinski et al., 1995). Although MnO is routinely analyzed by X-ray fluorescence (XRF) and electron microprobe, mantle-derived melts (MORB and OIB) have a limited range in MnO content (typically 0.14–0.18%); therefore, MnO data are not typically used in assessing the petrogenesis of basaltic lavas. In principle, the presence of eclogite in the Hawaiian plume can be evaluated with precise data for Fe/Mn and MnO content. A complication is that fractionation and accumulation of olivine crystals modify the major element composition of Hawaiian lavas (e.g., Yang et al., 1996; Rhodes and Vollinger, 2004). However, even at low pressure crystal fractionation, \(D_{\text{ Olivine/melt}} \) is close to unity (e.g., Beattie, 1994; Ewart and Griffin, 1994). Consequently, MnO content of Hawaiian lavas is not very sensitive to olivine fractionation and accumulation.

Major element heterogeneity in the mantle is obviously important to mantle geochemistry; however it is also important to geophysics since composition and temperature control density and hence seismic wave velocity anomalies (e.g., Forte and Mitrovica, 2001). The density of the mantle is significantly controlled by Fe/Mg ratio, which is strongly fractionated during partial melting. To constrain variations in Fe abundance in the mantle, Humayun et al. (2004) and Qin and Humayun (submitted for publication) used the precise determination of Fe/Mn ratio in mantle-derived basalts. They reported a distinctly higher Fe/Mn ratio in Hawaiian lavas (66–71) compared with lavas of similar MgO content from Iceland (58–61). This excess Fe is of the same magnitude (±10%) as estimates based on mantle tomography (Forte and Mitrovica, 2001). Core-mantle interaction (Bennett et al., 1996; Brandon et al., 1998,1999) was proposed as the source of this excess Fe by Humayun et al. (2004) based on the assumption that the mantle source was peridotite. Alternatively, Sobolev et al. (2005, 2007) argued that the higher Fe/Mn in Hawaiian lavas reflects melting of olivine-free garnet pyroxenite, and pointed to the fact that the highest Fe/Mn in Hawaiian lavas are in two Ko‘olau picrites, KOO-17A, and KOO-CF (Norman and García, 1999; Humayun et al., 2004).

To evaluate these hypotheses, we report high precision Fe/Mn determined by sector field inductively coupled plasma mass spectrometry (ICP-MS) of 35 lavas cored by the Koolau Scientific Drilling Project (KSDP) and 24 Maku‘u-stage Ko‘olau lavas (Haskins and García, 2004; Huang and Frey, 2005). In addition, six Kilauea sample solutions that were analyzed by Humayun et al. (2004) were re-analyzed with these Ko‘olau samples. The MnO content is calculated using Fe/Mn determined by ICP-MS and total iron as Fe2O3 content determined by XRF (Frey et al., 1994; Haskins and García, 2004). Our objectives are to use MnO content to evaluate if a dacite endmember is important in Ko‘olau lavas, and to evaluate if the high Fe/Mn in Hawaiian lavas is a result of partial melting of secondary garnet pyroxenite.

2. SAMPLES STUDIED

The Ko‘olau Scientific Drilling Project deepened and cored a water well in the Ko‘olau shield and recovered ~328 m of continuous core, which includes 103 lava flows (Haskins and García, 2004). Ninety-one lava units from the KSDP drill core were analyzed for major and trace elements (Haskins and García, 2004; Huang and Frey, 2005), and subsets of these samples were analyzed for Nd, Hf, and Pb isotopes (Salters et al., 2006; Fekiacova et al., in press). Geochemical studies indicate that most KSDP drillcore lavas have geochemical characteristics similar to Mauna Loa lavas, and the distinctive geochemical characteristics manifested by Makapu‘u-stage Ko‘olau lavas only occur in a subset of KSDP drillcore lavas (Haskins and García, 2004; Huang and Frey, 2005; Salters et al., 2006). We selected 35 KSDP lavas and 24 Makapu‘u-stage Ko‘olau lavas for high precision Fe/Mn analysis; most of these samples have been analyzed for Nd, Hf, and Pb isotopes. In addition, in order to evaluate inter-shield difference in Fe/Mn, the six Kilauea solutions that were analyzed by Humayun et al. (2004) were re-analyzed with the new Ko‘olau samples.

3. ANALYTICAL METHOD

About 40 mg of powdered sample of each Ko‘olau lava was dissolved using ~5 ml HF–HNO3 acids in 15 ml sealed Savillex® PFA beakers on a hotplate at ~200 °C. The solutions were dried, and residues were taken up in 1 ml concentrated HNO3. This procedure was repeated twice. Then, the residues were taken up in 10 ml of 50% HCl. The sealed beakers were heated on a hotplate at 150 °C for ~12 h. Then the sample solutions were diluted with 1% HCl to form solutions with ~2–3 ppm Fe suitable for ICP-MS analysis. As mentioned in Humayun et al. (2004), because FeCl3 is slightly volatile, complete drying of HCl solutions was avoided to prevent loss of Fe.

New Fe and Mn standard solutions were gravimetrically prepared by dissolving high purity Fe and Mn metals in HCl at the National High Magnetic Field Lab, Florida State University (FSU). Specifically, Fe stock solution (1000 ppm) was prepared by dissolving 0.39324 ± 0.00001 g (2σ) 99.998% pure Puratronic® metallic Fe wire in ~100 ml 25% HCl. Several drops of HNO3 were added to enhance the reaction. After ~12 h, the resulting solution was diluted with 18.2 mega-ohm de-ionized H2O, and the final solution weight was obtained gravimetrically. The resulting Fe concentration was 970.60 ± 0.06 ppm (2σ).
Manganese stock solution (1000 ppm) was prepared by dissolving 0.42706 ± 0.00002 g (2σ) g 99.98% pure Puratronic® metallic Mn turnings in ~100 ml 25% HCl. The reaction was complete in less than 10 min. Then, the solution was diluted with de-ionized H₂O to obtain a final Mn concentration of 1001.22 ± 0.07 ppm (2σ). A series of Fe–Mn standard solutions, with Fe/Mn ranging from 42 to 85, were gravimetrically prepared from these Fe and Mn stock solutions (Table 1) with a precision of ±0.01%, much better than our analytical uncertainty. These standard solutions were further diluted to make solutions with ~2 ppm Fe in 1% HCl for ICP-MS analysis. In contrast, the Fe–Mn standard solutions used by Humayun et al. (2004) were prepared from Spex Certiprep® high-purity Fe and Mn solutions at the University of Chicago; their concentrations are specified by the manufacturer as ±0.3%, valid only for one year from the date of certification. When compounded, the error on the Fe/Mn ratio is ±0.4% and this uncertainty approximately equals the analytical uncertainty. Further, the Certiprep® solutions had been opened prior to their use in Fe/Mn standard preparation probably adding a systematic error to the uncertainty.

The Fe/Mn ratio was determined with a Finnigan Element 1 high-resolution inductively coupled plasma mass spectrometer (HR-ICP-MS) equipped with guard electrode (CD-1E), operated in low resolution (R = 300) mode. The standard and sample solutions were nebulized using ESI® 100 μL/min PFA nebulizer and an ESI® PFA spray chamber. The flat-topped peaks of 55Mn⁺ and 57Fe⁺ were monitored by electrically scanning the accelerating voltage (EScan mode) at 100 ms/peak over 10% of the mass window, with 600 sweeps of the mass spectrum at count rates of >20 million counts per second using a secondary electron multiplier operated in Analog mode. Polyatomic interferences, 37Cl18O⁺ and 39Ar16O⁺H⁺ on 55Mn⁺, 40Ar16O⁺H⁺ on 57Fe⁺, were corrected by measuring their intensities in a 1% HCl reference solution spaced within the analytical sequence. The interference corrections were about 1–3%, and the variations of interferences were ~10% throughout our typical analytical sequence (about 2 h). Measured 57Fe⁺/55Mn⁺ intensity ratios in sample solutions were then converted to Fe/Mn abundance ratios using a calibration curve obtained on the Fe–Mn standard solutions (e.g., Fig. 1). Since 57Fe⁺/55Mn⁺ intensity ratio is directly measured, any matrix effects on 57Fe⁺ and 55Mn⁺ intensities are cancelled out and do not affect the 57Fe⁺/55Mn⁺ intensity ratio. The measured Fe/Mn is reported in Table 2, and 33 measurements of BHVO-1 during the course of this study give an average of 64.75 ± 0.39 (2σ), which correspond to a relative uncertainty of 0.6%. MnO content of each Ko‘olau sample was calculated using Fe/Mn determined by ICP-MS (0.6%, 2σ) and reported total iron content as Fe₂O₃ determined by XRF (0.5%, 2σ; Frey et al., 1994; Rhodes, 1996; Haskins and Garcia, 2004), and is listed in Tables 2a and 2b. Results for Kilauea samples are given in Table 2c. Using error propagation, the estimated relative uncertainty of MnO content is 0.8% (2σ).

Calibration curves of the new FSU Fe–Mn standard solutions (this study) and new analyses of the Chicago Fe–Mn standard solutions used by Humayun et al. (2004) are shown in Fig. 1a. The calibration curve of the Chicago Fe–Mn standard solutions is slightly offset from the calibration curve of the new FSU Fe–Mn standard solutions. The measured Fe/Mn in FSU Fe–Mn standard solutions are

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Fe/Mn ratios and Mn and Fe concentrations (ppm) in gravimetrically prepared FSU standard solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe/Mn gravimetric</td>
<td>[Mn] ppm</td>
</tr>
<tr>
<td>85.632 ± 9</td>
<td>1.8515</td>
</tr>
<tr>
<td>75.325 ± 8</td>
<td>1.8715</td>
</tr>
<tr>
<td>69.858 ± 8</td>
<td>1.8283</td>
</tr>
<tr>
<td>66.622 ± 7</td>
<td>1.8477</td>
</tr>
<tr>
<td>65.661 ± 7</td>
<td>1.8813</td>
</tr>
<tr>
<td>64.464 ± 7</td>
<td>1.8406</td>
</tr>
<tr>
<td>63.409 ± 7</td>
<td>1.8771</td>
</tr>
<tr>
<td>62.273 ± 7</td>
<td>1.8320</td>
</tr>
<tr>
<td>59.114 ± 6</td>
<td>1.8882</td>
</tr>
<tr>
<td>53.459 ± 6</td>
<td>1.8376</td>
</tr>
<tr>
<td>42.288 ± 6</td>
<td>1.9630</td>
</tr>
</tbody>
</table>

The relative uncertainties on the Mn and Fe concentrations are 0.01% (2σ).
within 0.2% of their gravimetric Fe/Mn values, and the measured Fe/Mn in Chicago Fe–Mn standard solutions are systematically lower than their gravimetric Fe/Mn values by ~1% (Fig. 1b). This difference is also indicated in reported Fe/Mn for USGS standard BHVO-2. Humayun et al. (2004) reported 66.14 (0.5%, 2σ) for BHVO-2, and our six measurements of BHVO-2 during the course of this study give an average of 65.25 (0.6%, 2σ) (Table 2c). Consequently, in this paper the Fe/Mn measurements reported by Humayun et al. (2004) are normalized to the FSU Fe–Mn standard solutions using the reported BHVO-2 values.

4. RESULTS AND DISCUSSIONS

At a given MgO content, Koʻolau lavas have higher Fe/Mn than MORB (53–57) and Icelandic (58–61) lavas, and the Fe/Mn range in Koʻolau lavas is similar to that in the five Hawaiian shields (Fig. 2). In detail, some
Fig. 2. MgO (%) versus Fe/Mn in Ko’olau and Kilauea lavas. Fields for published data of Hawaiian shield lavas (Humayun et al., 2004), and MORB and Icelandic lavas (Qin and Humayun, submitted for publication) are shown for comparison. The MORB field (Fe/Mn ~ 53–57) is defined by 14 samples from Pacific, Indian and Atlantic oceans, and the Icelandic field (Fe/Mn ~ 58–61) is defined by 19 Holocene lavas from Reykjanes rift (western volcanic zone), Théistareykir (northern volcanic zone) and Skridufell (central volcanic zone). At a given MgO content, KSDP Ko’olau lavas have similar or lower Fe/Mn than Kilauea lavas, and Makapu’u-stage Ko’olau lavas have similar or higher Fe/Mn than Kilauea lavas.

Ko’olau lavas have Fe/Mn > 70, and plot above the Hawaiian field. Importantly, at a given MgO content, Makapu’u-stage Ko’olau lavas have similar or slightly higher Fe/Mn than KSDP Ko’olau lavas, and KSDP Ko’olau lavas have Fe/Mn similar to, or lower than Kilauea lavas (Fig. 2).

4.1. Alteration effect on Fe/Mn

In addition to Loss on Ignition (LOI), the abundance ratio of K_2O/P_2O_5 is a good alteration indicator for subaerially erupted Hawaiian lavas, with altered Hawaiian lavas exhibiting unusually high or low K_2O/P_2O_5 (e.g., Feigenson et al., 1983; Frey et al., 1991, 1994; Yang et al., 1996; Huang and Frey, 2003; Haskins and Garcia, 2004). In this paper, we arbitrarily define lavas with $1.3 < K_2O/P_2O_5 < 2.0$ as unaltered lavas, and lavas with $K_2O/P_2O_5 < 1.3$ or >2.0 as altered lavas. The effect of subaerial alteration on Fe/Mn is indicated in Fig. 3a. Ko’olau lavas with $1.3 < K_2O/P_2O_5 < 2.0$ have Fe/Mn of 62.71–68.42. In contrast, Ko’olau lavas with $K_2O/P_2O_5 < 1.3$ or >2.0 have Fe/Mn ranging from 45.22 to 73.89, and most altered Ko’olau lavas tend to have higher Fe/Mn than unaltered Ko’olau lavas. The two Makapu’u-stage Ko’olau picrites, KOO-17A and KOO-CF, which were analyzed by Humayun et al. (2004), have K_2O/P_2O_5 of 0.5 and 2.2, respectively, and they have higher Fe/Mn than unaltered Ko’olau lavas (Fig. 3a). KSDP Unit 88 has Fe/Mn of 45.22, the lowest value in all analyzed Hawaiian lavas. This sample is highly altered and has a LOI of 3.65%, and K_2O/P_2O_5 of 1.1 (Haskins and Garcia, 2004). At a given MgO content, altered Makapu’u-stage Ko’olau lavas tend to have slightly higher total iron as Fe$_2$O$_3$ content than unaltered Makapu’u-stage Ko’olau lavas (Fig. 3b). Our limited MnO dataset does not show obvious difference between altered and unaltered Makapu’u-stage Ko’olau lavas (Fig. 3c); however, the altered KSDP lava Unit 88 has very high MnO content of 0.249%, which is significantly higher than other Hawaiian lavas (0.144–0.176%, Table 2). To be conservative, in the following discussion, we only focus on lavas with $1.3 < K_2O/P_2O_5 < 2.0$ and LOI < 0.8%.
4.2. Inter- and intra-shield MnO variation in Hawaiian lavas

Although lavas from different Hawaiian shields have similar Fe/Mn (Fig. 2), there are important inter- and intra-shield differences in contents of total iron as Fe₂O₃ and MnO. In a MgO-total iron plot, Kilauea lavas and Ko‘olau lavas show two subparallel, nearly horizontal fields, with Kilauea lavas having higher total iron content (12.6% ± 1.0, 2σ) than unaltered (1.3 < K₂O/P₂O₅ < 2.2, LOI < 0.8%) Ko‘olau lavas (11.7% ± 1.0, 2σ) (Fig. 4a). In detail, among Ko‘olau lavas, unaltered Makapu’u-stage Ko‘olau lavas have lower total iron content (11.3% ± 0.6, 2σ) than KSDP Ko‘olau lavas (11.9% ± 0.8, 2σ). Note that major elements of Ko‘olau lavas and majority of the Kilauea lavas were analyzed using the same XRF facility at the University of Massachusetts (Frey et al., 1994; Chen et al., 1996; Haskins and Garcia, 2004), so this total iron difference between different lava suites does not reflect inter-lab bias. Ko‘olau lavas do not form an obvious trend in a MgO–MnO plot, and show considerable scatter in MnO content at a given MgO content (Fig. 4b). In contrast, eight Kilauea lavas form a nearly horizontal trend in a MgO–MnO plot. At a given MgO content, Kilauea lavas have higher MnO content than KSDP Ko‘olau lavas, and Makapu’u-stage Ko‘olau lavas have lower MnO content than KSDP Ko‘olau horizontal.

The nearly horizontal MgO–MnO trend of Kilauea lavas (Fig. 4b) probably reflects olivine fractionation and accumulation, implying that D_Mn/Mg_melt is close to unity during low pressure crystal fractionation (e.g., Beattie, 1994; Ewart and Griffin, 1994). What causes the scatter of MnO content in Ko‘olau lavas? MnO contents of Ko‘olau lavas are correlated with Nd–Hf–Pb isotopes and La/Nb (Fig. 5), implying mantle source control. Since most Hawaiian shield lavas experienced low pressure olivine fractionation or accumulation, following Huang and Frey (2005), we adjusted the major element composition (SiO₂, total FeO and MnO) of Ko‘olau lavas to be in equilibrium with FOGO olivine, by adding or subtracting equilibrium olivine in 0.1 wt% steps assuming (Fe/Mg)lovsio/(Fe/Mg)molten = 0.30. For simplicity, in the following discussion we use SiO₂*, MgO*, and (Na₂O + K₂O)* contents representing olivine-adjusted contents of SiO₂, MgO, and Na₂O + K₂O. After olivine adjustment, within Ko‘olau lavas SiO₂* and MgO* contents are correlated with measured MnO content (Figs. 6a and b). Note that, since MnO content is not very sensitive to olivine fractionation and accumulation (Fig. 4b), we use the measured MnO content in Fig. 6. It can be seen in Fig. 6b that MnO content is correlated with MgO* content, even though MnO content does not correlate with measured MgO content (Fig. 4b). The linear correlations between MnO content and SiO₂*, MgO* contents, Nd–Hf–Pb isotopic ratios and La/Nb (Figs. 5 and 6a and b) in Ko‘olau lavas imply two-endmember mixing with the enriched Hawaiian endmember (high SiO₂ content, 206Pb*/204Pb*, La/Nb and low MgO content, 142Nd/144Nd, 176Hf/177Hf, 206Pb/204Pb), known as the Ko‘olau (Makapu‘u) endmember, having low MnO content (<0.15%).

The eight Kilauea lavas form vertical trends in plots of MnO vs 206Pb/204Pb and 208Pb*/204Pb* (Figs. 5c and d) and horizontal trends in plots of MnO vs SiO₂* and (Na₂O + K₂O)* (Figs. 6a and c). The different trends formed by lavas from Kilauea, a Kea-trend volcano, and Ko‘olau, a Loa-trend volcano, may reflect a Loa-Kea geochemical difference. Important geochemical differences in major and trace elements, and isotopic ratios between Loa-trend and Kea-trend lavas have been documented (e.g., Lassiter et al., 1996; Abouchami et al., 2005; Huang et al., 2005). Specifically, Loa-trend lavas sampled variable amounts of the Ko‘olau (Makapu‘u) endmember that is absent in Kea-trend lavas (Huang et al., 2005). However, more MnO data on different Hawaiian shields are required to determine if there are systematic differences in MnO content between Loa- and Kea-trend volcanoes. In this paper, we will focus on the origin of the low-MnO Ko‘olau (Makapu‘u) endmember.

What is the origin of the Ko‘olau (Makapu‘u) endmember? High SiO₂ content is a distinct geochemical characteristic of the Ko‘olau (Makapu‘u) endmember, which has been proposed to reflect a SiO₂-rich melt derived from eclogite (Hauri, 1996; Huang and Frey, 2005). Huang and Frey (2005) discussed in detail the pros and cons of this proposal. Below we summarize the important issues.

Frey and Rhodes (1993) and Frey et al. (1994) noted that Makapu‘u-stage Ko‘olau lavas have higher SiO₂ content than Kilauea lavas. Hauri (1996) showed that there are important inter-shield correlations between major element contents and isotopic ratios. Specifically, the average SiO₂ and CaO contents of each Hawaiian shield, adjusted to be in equilibrium with FOGO olivine, are correlated with
their average isotopic ratios, with Makapu‘u-stage Ko‘olau lavas defining the high SiO$_2$ endmember. Huang and Frey (2005) showed that within the Ko‘olau shield the SiO$_2^*$ content is correlated with Nd–Hf–Pb isotopic ratios. In addition, Garcia (2002) and Sobolev et al. (2005) found that olivines from the Ko‘olau shield have higher Ni content than olivines from other Hawaiian shields. Consequently, the Ko‘olau endmember is characterized by relatively high SiO$_2$ and K$_2$O + Na$_2$O contents and low CaO content that are correlated with isotopic ratios (87Sr/86Sr, 143Nd/144Nd, 176Hf/177Hf and 206Pb/204Pb, 208Pb*/206Pb*, 187Os/188Os, and δ^{18}O); also this component has a strong residual garnet signature, i.e., Makapu‘u-stage Ko‘olau lavas have relatively low Sc and Yb abundances and high La/Yb, and olivines with high Ni contents. The high SiO$_2$ content in Makapu‘u-stage Ko‘olau lavas was originally proposed to reflect a lower magma segregation pressure for Ko‘olau lavas (Frey et al., 1994). However, Hauri (1996) showed that the high SiO$_2$ content in Makapu‘u-stage Ko‘olau lavas requires magma segregation at depths of 30–45 km, thinner
than Hawaiian lithosphere (Li et al., 2004). Also, Hauri (1996) showed that Hawaiian primary magmas, in general, have much higher FeO content than the experimental melts of peridotite at low pressure. That is, the estimated primary magma compositions of Hawaiian shield lavas, especially Ko‘olau lavas, are not in equilibrium with garnet peridotite. Moreover Eggins (1992) and Wagner and Grove (1998) experimentally showed that the estimated Kilauea primary magma compositions have SiO2 content too high to be in equilibrium with garnet peridotite.

An alternative idea, melt-mantle reaction, was proposed to increase the SiO2 content in Hawaiian shield lavas (Eggins, 1992; Wagner and Grove, 1998; Stolper et al., 2004). To explain the SiO2 difference between the two SiO2 groups of Mauna Kea lavas, Stolper et al. (2004) proposed that high-SiO2 group lavas were formed by crystallization of ~12% olivine from, and assimilation of ~12% orthopyroxene and ~8% clinopyroxene by, low-SiO2 group lavas. Since this reaction involves <20% orthopyroxene and clinopyroxene, phases with low abundances of Nd, Hf, and Pb relative to basaltic melt, it is unlikely that melt-mantle reaction can modify the isotopic ratios of Nd, Hf, and Pb in melt. Consequently, melt-mantle reaction cannot explain the major element content-isotope correlations observed by Hauri (1996) and Huang and Frey (2005). Further, this melt-mantle reaction slightly increases CaO content with increasing SiO2 content in the melt (Fig. 14d of Stolper et al., 2004), which cannot explain the coupled low-CaO and high-SiO2 in Makapu‘u-stage Ko‘olau lavas (Frey et al., 1994; Haskins and Garcia, 2004; Huang and Frey, 2005).

Hauri (1996) and Huang and Frey (2005) proposed that the distinctive geochemical characteristics of the Ko‘olau endmember are signatures of a dacite melt, generated by small degree (10–20%) partial melting of eclogite, formed from recycled oceanic crust (MORB and sediments). This dacite melt must be mixed with picritic melts generated by garnet peridotite melting to explain the distinct compositions of Hawaiian shield lavas. Since SiO2-rich dacite melts are likely to react with surrounding peridotite, Sobolev et al. (2005) suggested a two-stage model. In the first stage, eclogite partially melts at great depth (~150 km) to generate SiO2-rich dacite melt, which reacts with surrounding peridotite, replaces olivine with clinopyroxene, and forms an olivine-free secondary garnet pyroxenite. In the second stage, partial melts (~40% degree of partial melting) of this secondary garnet pyroxenite are formed with high SiO2 (>49%) and Ni contents, which are then mixed with melts.

Fig. 6. SiO2*, MgO*, (Na2O + K2O)*, and Al2O3/CaO versus MnO content in Ko‘olau and Kilauea lavas. Star values represent olivine-adjusted major element compositions. See text for details. Since MnO content is not very sensitive to olivine fractionation and accumulation (Fig. 4b), measured MnO content is used in this figure. Experimental melts of garnet peridotite (Walter, 1998), MORB-like eclogite (Pertermann and Hirschmann, 2003) and the secondary garnet pyroxenite (Sobolev et al., 2005, 2007) are plotted for comparison. In detail, partial melts of eclogite range from dacite to andesite to basaltic andesite. The inset in (b), shows the MgO*-MnO correlation of Ko‘olau lavas in detail. In (d), a mixing line, with an increment of 10%, between a picrite melt and a dacite melt is shown, and it explains the negative trend of Ko‘olau lavas. Model details are in Table 3.
from garnet peridotite to form the Hawaiian shield lavas. However, SALTERS et al. (2006) argued that if the dacite end-member, with Mg# ~35, is important in Hawaiian lavas, it is incorrect to adjust magma compositions to be in equilibrium with a common olivine composition (Fo₃₀). Therefore, SALTERS et al. (2006) argued that the observed correlations between major element content and isotopic ratios (HAURI, 1996; HUANG and FREY, 2005) are artifacts, and they argued against the presence of eclogite in the Hawaiian plume. However, dacite melts have much lower FeO and MgO contents than picrite melts (e.g., YAXLEY and GREEN, 1998; PERTERMANN and HIRSCHMANN, 2003). Consequently, adding a large amount (up to 30%) of dacite melt into picrite melt does not significantly change the olivine composition in equilibrium with the mixed melts (Table 3). This result is consistent with abundant olivine phenocrysts, up to Fo₉₅, in Ko’olau lavas (GARCIA, 2002; HASKINS and GARCIA, 2004).

Are the linear correlations between MnO content and SiO₂*, MgO* contents, Nd–Hf–Pb isotopic ratios, and La/Nb (Figs. 5 and 6a and b) in Ko’olau lavas consistent with a dacite melt contributing to Ko’olau lavas? Specifically, is the low MnO content identified in the Ko’olau (Makapu’u) endmember consistent with an eclogite origin? MnO is slightly incompatible in garnet peridotite melting at high pressure (>3 GPa), but it is compatible in partial melting of eclogite and garnet pyroxenite (Fig. 7a). High-pressure (2–3 GPa) experiments on partial melting of MORB-like eclogite show that low degree dacite melts have low MgO and MnO contents, and high SiO₂ and Na₂O + K₂O contents (PERTERMANN and HIRSCHMANN, 2003; Figs. 6 and 7). This experimental result is consistent with the low MnO content (0.05%) in adakites, which are suggested to be low degree partial melts derived from subducting slabs containing eclogite (YOGODZINSKI et al., 1995). In addition, new experiments show that partial melts of a secondary garnet pyroxenite composition proposed by SOBOLEV et al. (2005) also yield low MgO and MnO, and high SiO₂ contents (SOBOLEV et al., 2007; Fig. 6). In contrast, experimental partial melts of garnet peridotite at high pressure (>3 GPa) have high MgO and MnO contents and low SiO₂ content;

Table 3

<table>
<thead>
<tr>
<th></th>
<th>SiO₂ (%)</th>
<th>Al₂O₃ (%)</th>
<th>Total FeO (%)</th>
<th>MnO (%)</th>
<th>MgO (%)</th>
<th>CaO (%)</th>
<th>Fe/Mn</th>
<th>Equilibrium olivine Fo⁰</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picrite endmember</td>
<td>46.84</td>
<td>11.23</td>
<td>9.60</td>
<td>0.18</td>
<td>19.64</td>
<td>9.69</td>
<td>52.8</td>
<td>92</td>
</tr>
<tr>
<td>Hypothetical Fe-rich picrite endmember</td>
<td>46.84</td>
<td>11.70</td>
<td>0.18</td>
<td>64.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dacite endmember</td>
<td>63.64</td>
<td>15.35</td>
<td>5.18</td>
<td>0.06</td>
<td>1.54</td>
<td>4.93</td>
<td>86.7</td>
<td>64</td>
</tr>
<tr>
<td>Sobolev high-SiO₂ endmember</td>
<td>53.03</td>
<td>13.77</td>
<td>8.13</td>
<td>0.11</td>
<td>12.33</td>
<td>8.58</td>
<td>73.4</td>
<td>90</td>
</tr>
<tr>
<td>30% dacite + 70% picrite</td>
<td>51.88</td>
<td>12.47</td>
<td>8.27</td>
<td>0.14</td>
<td>14.21</td>
<td>8.26</td>
<td>57.0</td>
<td>91</td>
</tr>
</tbody>
</table>

b) Since SiO₂ content in partial melts of peridotite is not very sensitive to source composition (HIROSE and KUSHIRO, 1993), we assume that the hypothetical picrite melt of an Fe-rich peridotite has SiO₂ of 46.84% and MnO of 0.18%, the same as in those the experimental picrite melt, and FeO of 11.7% and Fe/Mn of 64, similar to those in Hawaiian lavas.

c) Melt composition of Run A200K (PERTERMANN and HIRSCHMANN, 2003).

d) High SiO₂ endmember from SOBOLEV et al. (2007).

e) Mixture of 30% dacite endmember and 70% picrite endmember.

Equilibrium olivine is calculated assuming (Fe/Mg)脑子/Fe/Mg熔体 = 0.3.

Fig. 7. MnO and Fe/Mn in experimental melts of garnet peridotite and MORB-like eclogite versus degree of partial melting. MnO is compatible in partial melting of MORB-like eclogite, but it is slightly incompatible in partial melting of garnet peridotite. Low degree partial melting of MORB-like eclogite significantly increases Fe/Mn in the melts; in contrast, partial melting of garnet peridotite only slightly decreases Fe/Mn in the melts. Depleted mantle (DM) and primitive mantle (PM) estimates from McDONOUGH and SUN (1995), SALTERS and STRACKE (2004) and WORKMAN and HART (2005) are shown for comparison. Peridotite and eclogite sources, and experimental melt compositions are from WALTER (1998) and PERTERMANN and HIRSCHMANN (2003).

they cannot be the Ko’olau (Makapu’u) endmember (Figs. 6 and 7). The positive MnO–MgO* trend in Fig. 6b suggests that the Ko’olau (Makapu’u) endmember should be similar to the dacite and andesite melts generated by low
degree (10–20%) partial melting of eclogite (Huang and Frey, 2005), or the partial melts of the secondary garnet pyroxenite (Sobolev et al., 2005, 2007).

Recycled ferromanganese sediments (Fe/Mn ~ 1–31) in the Hawaiian plume, which have been proposed as a possible component explaining the radiogenic 186 Os/188 Os observed in Hawaiian lavas (Ravizza et al., 2001), could significantly affect the MnO content and Fe/Mn in Hawaiian lavas. Since Ti isotopic ratios are very sensitive to the presence of even small amounts of ferromanganese sediments, Nielsen et al. (2006) constrained the amount of ferromanganese sediments in the Hawaiian plume at less than 30 ppm by mass from Ti isotopic ratios in Hawaiian lavas. They determined that the effect of the ferromanganese sediment on MnO content, Fe/Mn or Os isotopic ratios in Hawaiian lavas is negligible.

4.3. Effect of eclogite endmember on Fe/Mn

Humayun et al. (2004) noted that Hawaiian lavas have higher Fe/Mn than MORB and Icelandic lavas (Fig. 2). Assuming an olivine-dominated source for Hawaiian shield lavas, Humayun et al. (2004) proposed that the high Fe/Mn is an outer core signature. However, partial melts of an olivine-free source, eclogite or the secondary garnet pyroxenite, also have elevated Fe/Mn (Fig. 7b; Pertermann and Hirschmann, 2003; Humayun et al., 2004; Sobolev et al., 2007). For example, the low degree (10–20%) partial melts of eclogite have Fe/Mn > 80, and ~50% partial melts have Fe/Mn of 60–70 (Fig. 7b; Pertermann and Hirschmann, 2003). Consequently, Sobolev et al. (2005, 2007) proposed that the high Fe/Mn in Hawaiian lavas is the result of sampling a secondary garnet pyroxenite component. Below we evaluate this argument.

In Fig. 8, SiO2* content is plotted against Fe/Mn in Kō‘olau and Kilauea lavas. Since Fe/Mn is not very sensitive to olivine fractionation and accumulation (Fig. 2), we plot measured Fe/Mn in Fig. 8. Kō‘olau and Kilauea lavas fall on a horizontal trend with no obvious difference in Fe/Mn with increasing SiO2* content. Kō‘olau lavas have higher SiO2* content than Kilauea lavas, but Kō‘olau lavas have similar or lower Fe/Mn than Kilauea lavas. Partial melts of garnet peridotite (Walter, 1998) are also plotted for comparison. Fe/Mn is negatively correlated with SiO2 content in partial melts of garnet peridotite, and Hawaiian lavas have higher Fe/Mn than these partial melts of garnet peridotite.

The model of Sobolev et al. (2005, 2007) proposed that Hawaiian shield lavas are mixtures of partial melts derived from secondary garnet pyroxenite and peridotite; the proportion of melt derived from secondary garnet pyroxenite varies from ~30% in Kilauea lavas to ~90% in Makapu‘u-stage Kō‘olau lavas. Two mixing lines in Fig. 8 show the effect of the high SiO2 melt of the secondary garnet pyroxenite on Fe/Mn of the mixtures (Table 2). Two picritic melt compositions are used in the modeling: the average composition of partial melts of garnet peridotite at 3–4 GPa, which has Fe/Mn of 53 (Walter, 1998; Table 3), and a hypothetical picritic melt of Fe-rich garnet peridotite, which has Fe/Mn of 64, similar to those in Hawaiian lavas (Fig. 8). Sobolev et al. (2007) proposed that the high SiO2 endmember in Hawaiian lavas have 53% SiO2, 8% FeO, and Fe/Mn of 73 (Table 3). The mixing line between this high SiO2 endmember and the picritic melt with Fe/Mn of 53 is nearly straight. Although this mixing line can reproduce the high Fe/Mn observed in some Kō‘olau lavas, it significantly underestimates the Fe/Mn in Kilauea lavas, which have Fe/Mn similar to, or higher than, Kō‘olau lavas (Fig. 8). In addition, this mixing model predicts that the Fe/Mn of Hawaiian shield lavas varies from ~52 to 61 as observed in MORB and Icelandic picrites (Qin and Humayun, submitted for publication) to high values (~70) as a function of the amount of partial melt from the secondary garnet pyroxenite. This is not observed, but to the contrary some KSDP Kō‘olau lavas exhibit Fe/Mn lower than that of Kilauea lavas (Figs. 2 and 8).

Similarly, the mixing line between the high SiO2 endmember in the model of Sobolev et al. (2005, 2007) and the hypothetical picritic melt of Fe-rich peridotite with Fe/Mn of 64 is also nearly straight, and at high SiO2* this mixing line trends above the nearly horizontal Hawaiian trend (Fig. 8). Therefore, the nearly constant Fe/Mn in Hawaiian lavas is not consistent with mixing melts derived from the secondary garnet pyroxenite as proposed by Sobolev et al. (2005, 2007).

On the other hand, although the dacite melt has very high Fe/Mn (up to 87), it has very low FeO (5%), and MnO (0.06%) contents (e.g., Pertermann and Hirschmann, 2003; Table 3). Consequently, mixing lines between picrite melts and a dacite melt are hyperbolic, curving upwards to high SiO2 (Fig. 8). The mixing line involving the picrite melt with Fe/Mn of 53 plots below the nearly horizontal Hawaiian trend. But the mixing line involving the hypothetical Fe-rich picrite melt, with Fe/Mn of 64, reproduces the nearly horizontal Hawaiian trend. Adding up to 30% dacite melt only increases Fe/Mn from 64 to 67. This effect is also
shown in Fig. 4, that is the lower MnO contents in Koʻolau lavas are accompanied by lower total Fe₂O₃ contents, so the net result is that Koʻolau lavas have Fe/Mn similar to those in Kilauea lavas (Figs. 2 and 8). Therefore, we suggest that the high Fe/Mn in Hawaiian lavas arises from the high-MgO, low-SiO₂ picritic endmember in Hawaiian lavas, which must then reflect a mantle source signature. The presence of high Fe/Mn mantle source beneath Hawaii may be accounted for by core-mantle interaction (Humayun et al., 2004), or by other possibilities. Although the mechanism proposed by Sobolev et al. (2005, 2007) does not explain the bulk of Koʻolau data (Fig. 8), it may be relevant at other Hawaiian volcanoes. For example, Herzberg (2006) proposed that both high-SiO₂ and low-SiO₂ groups tholeiitic lavas at Mauna Kea are partial melts of secondary garnet pyroxenite (Sobolev et al., 2005, 2007), a proposal that remains to be tested using Fe/Mn and MnO content.

4.4. Sampling eclogite in the Hawaiian plume

There is no doubt that the geochemical characteristics of Koʻolau lavas (Makapuʻu and KSDP lavas), and of Hawaiian shield lavas in general, reflect mixing of SiO₂-rich and SiO₂-poor endmembers. Hauri (1996) and Huang and Frey (2005) proposed that the SiO₂-rich Koʻolau endmember is a high-SiO₂, low-MgO dacite endmember, formed by low degree (10–20%) partial melting of eclogite. Pertermann and Hirschmann (2003) suggested that the SiO₂-rich Koʻolau (Makapuʻu) endmember is andesite or basaltic andesite, which are moderate degree partial melts of eclogite. In contrast, Sobolev et al. (2005) proposed that the Koʻolau endmember is a high-SiO₂, high-MgO melt, generated by moderate degree (~40%) partial melting of a secondary garnet pyroxenite. Can these models be distinguished?

The measured MnO contents in Koʻolau lavas are correlated with SiO₂*, MgO*, and (Na₂O + K₂O)* contents, and Al₂O₃/CaO (Fig. 6). The positive MgO*-MnO trend (Fig. 6b) of Koʻolau lavas points to the low-MgO (~5%) and MnO part of the partial melt trend of eclogite, which is consistent with the SiO₂-rich Koʻolau (Makapuʻu) endmember being dacite or low-MgO andesite but not basaltic andesite. Supporting this inference, based on MgO*/SiO₂* correlation of Koʻolau lavas, Huang and Frey (2005) inferred that the SiO₂-rich endmember in Koʻolau lavas has ~66% SiO₂ and ~2% MgO. The trends in Fig. 6 define mixing lines between picritic melts derived from peridotite (Walter, 1998) and dacite or low-MgO andesite melts derived from eclogite (Pertermann and Hirschmann, 2003).

Although the experimental partial melts of a secondary garnet pyroxenite (Sobolev et al., 2007) are also on the extension of the Koʻolau trend in the plots of SiO₂* and MgO* vs MnO (Figs. 6a and b), these experimental melts are offset from the Koʻolau trends to lower MnO content (~0.13%) in the plots of (Na₂O + K₂O)* and Al₂O₃/CaO vs MnO (Figs. 6c and d). The Na₂O + K₂O content in the starting pyroxenite composition of Sobolev et al. (2007) could be adjusted upwards if the dacite melt involved in the first stage of the Sobolev et al. (2005) model is more enriched in Na₂O + K₂O, e.g., if this dacite melt was a low degree (10–20%) partial melt formed from oceanic crust instead of gabbroic crust (Table S2 of Sobolev et al., 2005). However, the Al₂O₃/CaO–MnO plot is more robust (Fig. 6d). The Al₂O₃/CaO ratio in partial melts of garnet peridotite is pressure dependant. At 3–4 GPa partial melts of garnet peridotite have Al₂O₃/CaO of 1.2 ± 0.1, similar to those of the fertile peridotites used as the starting compositions (Walter, 1998). A mixing line between partial melts of garnet peridotite at 3–4 GPa and a dacite melt is nearly straight, and it explains the Al₂O₃/CaO–MnO trend in Koʻolau lavas (Fig. 6d). However, partial melts of the secondary garnet pyroxenite have Al₂O₃/CaO of 1.5–1.9, similar to or greater than those of Makapuʻu-stage Koʻolau lavas, but at significantly lower MnO content (<0.13% vs >0.15%). The secondary garnet peridotite used in Sobolev et al. (2007) has Al₂O₃/CaO of 1.6, and the alternative secondary garnet pyroxenite proposed by Sobolev et al. (2005) has Al₂O₃/CaO of 1.8. In the model of Sobolev et al. (2005) the Makapuʻu-stage Koʻolau lavas represent nearly pure melts of the secondary garnet pyroxenite, while most other Hawaiian shield lavas are explained as mixtures of melts derived from peridotite and secondary garnet pyroxenite. It can be seen from Fig. 6d that this model predicts MnO content too low to explain the MnO content (0.15–0.18%) of Koʻolau lavas. Therefore, we argue that the high-SiO₂ Koʻolau (Makapuʻu) endmember is consistent with a dacite or low-MgO andesite melt, but not with a partial melt derived from secondary garnet pyroxenite.

Based on the “sandwich”-type experiments of Yaxley and Green (1998), it is expected that SiO₂-rich dacite melt from eclogite reacts with surrounding peridotite to form secondary garnet pyroxenite (e.g., Sobolev et al., 2005). Our geochemical data for Koʻolau lavas appear to be in conflict with this expectation since we propose mixing between picrite melt derived from peridotite with dacite (or low-MgO andesite) melt derived from eclogite. Sobolev et al. (2005) depicted eclogite as pods surrounded by peridotite; in this physical context dacite melt derived from eclogite is likely to react with the surrounding peridotite. However recent models for the geometry of mantle heterogeneities beneath Hawaii have indicated that compositional heterogeneities, such as eclogite, are stretched into long filaments, laterally continuous over tens or hundreds of kilometers (Farnetani et al., 2002; Farnetani and Samuel, 2005). Lead isotope evidence for such filaments, termed “spaghetti”, can be found in the long-term persistence of the “Loa” and “Kea” geochemical trends (Abouchami et al., 2005). Like the model proposed by Abouchami et al. (2005), we propose that this physical context applies to entrained oceanic crust (eclogite) in the Hawaiian plume. If the eclogite was present as long filaments parallel to the plume axis laterally continuous over tens or hundreds of kilometers, then dacite melt could travel through the eclogite matrix towards the surface without substantial reaction with peridotite.

5. CONCLUSIONS

A precise method for obtaining Fe/Mn ratios and MnO contents has been used to analyze lavas forming the Hawaiian shields of Koʻolau and Kilauea. The Fe/Mn of unaltered
Ko‘olau lavas ranges from 62.7 to 68.4, and the Fe/Mn of Kilauea lavas ranges from 64.6 to 67.7. The MnO ranges are small compared with the uncertainties of MnO data obtained by traditional analytical techniques such as XRF and electron microprobe. Our more precise MnO data show that the MnO contents of Ko‘olau lavas are correlated with Nd–Hf–Pb isotopic ratios, La/Nb and Al₂O₃/CaO, and olivine-adjusted contents of SiO₂, MgO and Na₂O + K₂O, thereby implying two-endmember mixing. These correlations show that the enriched Hawaiian endmember, the Ko‘olau (Makapu‘u) endmember, is characterized by high SiO₂, Na₂O + K₂O and Al₂O₃/CaO, and low MgO and MnO. There are no known means of generating this SiO₂-rich, MnO-poor endmember by partial melting of garnet peridotite, without the involvement of eclogite. Rather, the high SiO₂, low MnO Ko‘olau (Makapu‘u) endmember can be a dacite or low-MgOandesite melt, formed by low degree (10–20%) partial melting of eclogite.

The involvement of dacite (or low-MgO andesite) melt does not explain the observed high Fe/Mn in Hawaiian shield lavas because dacite melt has FeO and MnO contents too low to significantly increase the Fe/Mn in the mixed magmas. Further, the lack of correlation between Fe/Mn and olivine-adjusted SiO₂ content in Hawaiian lavas is inconsistent with the two-stage partial melting of eclogite model proposed by Sobolev et al. (2005, 2007). We argue that the high Fe/Mn of Hawaiian lavas originates from the picrite endmember. Variable addition of dacite melt to this picritic melt explains the systematic correlation of MnO content with major element contents and ratios, trace element ratios and radiogenic isotopic ratios observed in Ko‘olau lavas. The origin of the high Fe/Mn in the mantle beneath Hawaii may be due to core-mantle interaction (as previously proposed) or to other processes.

ACKNOWLEDGMENTS

We thank T. Zateso for maintaining the Element at FSU. We thank M. Bizimis, C. Herzberg, M. Norman, and V.J.M. Salters for discussions, and M. Hirschmann, A. Schersten, and an anonymous referee for constructive reviews. We thank M. Rehämmer for editorial handling. Support by NSF EAR-0509176 is gratefully acknowledged.

REFERENCES

Associate editor: Mark Rehkämper