Calcium isotopic compositions of chondrites

Shichun Huang a,*, Stein B. Jacobsen b

a Department of Geoscience, University of Nevada, Las Vegas, United States
b Department of Earth and Planetary Sciences, Harvard University, United States

Received 16 March 2016; accepted in revised form 29 September 2016; available online 4 October 2016

Abstract

We report mass-dependent and mass-independent Ca isotopic variations in nine chondrites from three groups: carbonaceous, ordinary and enstatite chondrites. There is about 0.25‰ per amu, i.e., ~1‰ in 44Ca/40Ca, variation in chondrites: carbonaceous chondrites have the lightest Ca isotopes, enstatite chondrites have modeled bulk Earth like Ca isotopes, and ordinary chondrites are in between. The correlations between mass-dependent Ca isotopic variation and chemical variations in chondrites may reflect variable contributions from different endmembers, including refractory inclusions, in different chondrite groups. In detail, enstatite chondrites and the Earth share similar isotopic characteristics, but are very different in chemical compositions.

At the ±1 and ±2 ε-unit levels, respectively, there is no measurable 40Ca or 43Ca anomaly in bulk chondrites. Carbonaceous chondrites show several ε-units of 48Ca excess. That is, Ca exhibits both mass-dependent and mass-independent isotopic variations in chondrites, similar to O isotopes. The 48Ca anomaly in bulk chondrites is positively correlated with 50Ti anomaly, but does not form simple correlation with 54Cr anomaly, implying multiple supernova sources for these neutron-rich isotopes in the Solar System. Finally, all meteorites with negative Δ17O have either 48Ca deficits (differentiated meteorites) or 48Ca excess (carbonaceous chondrites), implying that the Sun with a very negative Δ17O is probably also characterized by 48Ca anomaly compared to the Earth. CAIs cannot be taken as representative of the initial isotopic compositions of refractory elements like Ca for the Earth–Moon system.

© 2016 Elsevier Ltd. All rights reserved.

Keywords: Chondrites; Calcium isotopes; Nucleosynthetic anomaly; Double spike

1. INTRODUCTION

Primitive meteorites, i.e., chondrites, escaped parental body differentiation processes, and are thought to be representative of the “building-blocks” of the planets in our Solar System (e.g., Jacobsen and Wasserburg, 1980). Their isotopic and chemical compositions provide important constraints on the formation and evolution of the early Solar System. It has been known for several decades that chondrites show very large O isotopic variations, both mass-dependent and mass-independent, and that only enstatite chondrites and the Earth share the same O isotopic characteristics (e.g., Clayton, 2003). While Mg and Fe isotopic studies show that all chondrites and the Earth share the same isotopic compositions (e.g., Poitrasson et al., 2005; Schoenberg and von Blanckenburg, 2006; Teng et al., 2008, 2010; Chakrabarti and Jacobsen, 2010a; von Strandmann et al., 2011), Si is more complicated due to conflicting results in the literature (Georg et al., 2007; Fitoussi et al., 2009; Ziegler et al., 2010; Chakrabarti and Jacobsen, 2010b; Armytage et al., 2011; Fitoussi and Bourdon, 2012; Savage and Mynier, 2013). In detail,
ordinary and carbonaceous chondrites have similar Si isotopic compositions, which are slightly heavier than enstatite chondrites, a difference attributed to lighter Si isotopes in the metal phase in enstatite chondrites (e.g., Shahar et al., 2011; Savage and Mynoor, 2013). In contrast, Dauphas et al. (2015) argued that the Si isotopic variations in chondrites reflect equilibrium Si isotopic fractionation between solid olivine and gaseous SiO in the Solar nebula. The reported Si isotopic difference between the Earth and the (ordinary and carbonaceous) chondritic average ranges from non-resolvable to 0.1‰ per amu, which may reflect lighter Si isotopes in the Earth’s core (e.g., Georg et al., 2007) or lower mantle (Huang et al., 2014).

Based on atoms per 10^8 Si atoms, Ca is the sixth most abundant element in rocky planets and chondrites, after O, Si, Mg, Fe and Al (e.g., Anders and Grevesse, 1989). Ca has a rich isotope system: It consists of six stable isotopes, ranging from mass 40 to 48, the third largest relative mass difference only after H and He. According to isotopes, ranging from mass 40 to 48, the third largest relative mass difference only after H and He. According to Burbridge et al. (1957), 40Ca is generated during the oxygen- and silicon-burning processes, and it is also one of the decay products of 40K (t_1/2 = 1.27 Ga). 42Ca and 43Ca are produced during the oxygen-burning process. 44Ca is the decay product of the short-lived 44Ti (t_1/2 = 60 yrs), which is produced together with 46Ca during oxygen- and silicon-burning processes. 46Ca is an s-process isotope. 48Ca requires a special neutron-rich nucleosynthetic process, which might happen during Type Ia supernova explosion (Meyer et al., 1996) and electron-capture supernova explosion (Wanajo et al., 2013). What are the Ca isotopic signatures of chondrites and their relationship to the Earth, other rocky planets and asteroids? Existing Ca isotopic studies on bulk chondrites focused on mass-dependent isotopic variations (Simon and DePaolo, 2010; Valdes et al., 2014) which yield different results on enstatite chondrites, and some mass-independent isotopic variations are reported on a subset of chondrites (Simon et al., 2009; Moynier et al., 2010; Dauphas et al., 2014; Schiller et al., 2015). Here we report both mass-dependent and mass-independent Ca isotopic measurements on nine chondrites from all three major chondrite groups, carbonaceous, ordinary and enstatite chondrites.

2. SAMPLES AND ANALYTICAL PROCEDURE

Nine chondrites from three groups were selected for Ca isotopic measurements, including three carbonaceous chondrites: Allende (CV3), Murchison (CM2) and Orgueil (CI1); four ordinary chondrites: Bruderheim (L6), Peace River (L6), Grady (1937) (H3) and Guarena (H6); and two enstatite chondrites: Abee and Indarch (both are EH). In addition, a lunar anorthosite, 60025, and a eucrite, Juvinas, are also analyzed for comparison.

The detailed analytical procedure, including sample dissolution, Ca column chemistry, and TIMS measurements, has been documented in our previous publications (Huang et al., 2010, 2011, 2012). Here we provide a short summary. Several mg of powdered samples were dissolved using 2 ml 1:1 mixed HF-HNO3 acid in capped 6 ml standard square body Teflon vials at 120 °C for two weeks. Then the sample solutions were dried down three times with concentrated HNO3 and once with concentrated HCl to break down the insoluble CaF2. Finally, the sample was diluted using 2.5 N HCl to form a 10 µg Ca/ml solution. For unspiked TIMS measurement, Ca was purified from each sample solution using HCl on a cation column (BioRad AG50W-X12). For spiked TIMS measurement, a certain amount of 44Ca-48Ca double spike solution was mixed with each sample solution before column chemistry. Our column chemistry was carefully calibrated to ensure ~100% Ca yield, and each sample was passed through the column twice to ensure that the final Ca cut is free of matrix elements, such as K and Ti. For each measurement, ~5 µg of purified Ca was loaded as Ca(NO3)2 onto one of the side filaments of a zone-refined Re triple filament assembly. The Ca isotopic ratios were measured using a GV Isoprobe-T TIMS at Harvard University, with a two-sequence method: The first sequence collects 40Ca, 41Ca, 42Ca, 43Ca and 44Ca, and the second collects 46Ca and 48Ca. Prior to data acquisition, masses 43.5, 47 and 49 have been carefully scanned using electron multiplier to ensure that no doubly charged 87Sr, 45Ti and 49Ti signals were observed. The measured sample-to-spike ratios, 40Ca/44Ca, in all our spiked measurements are within 5% of that obtained using the weights of the dissolved samples, their CaO contents, and the 42Ca-44Ca double spike amounts, indicating that undissolved Ca-bearing phase, if any, is negligible in all our samples. Because of the 10 V limit of the Faraday cups on our Isoprobe-T TIMS, the internal precision is much better than external reproducibility. Consequently, each sample was measured multiple times, and the averages and resulting external reproducibility are reported.

Two types of Ca isotopic variations are reported. Compared to terrestrial silicate rocks and minerals, SRM915a does not show any measurable radiogenic 40Ca excess at ±0.5 ε-unit level (Amini et al., 2009; Simon et al., 2009; Caro et al., 2010; Table 1). Consequently, in this paper SRM915a is used as the standard sample reporting both mass-dependent and mass-independent Ca isotopic effects. For mass-independent Ca isotopic variation, both instrumental and natural mass fractionations are corrected using the exponential law to a constant 42Ca/44Ca ratio of 0.31221 (Russell et al., 1978), and mass-independent Ca isotopic variations are reported using ε-notations:

ε^{44/42}_{Ca} = \left[\left(\frac{44Ca/42Ca}_{\text{sample}(N)} \right)_{\text{SRM915a}(N)} - 1 \right] \times 10,000

where i represents 40, 43 and 48, and (N) in the subscript denotes value obtained after internal normalization. Thirty-two measurements of NIST SRM915a yield 44Ca/42Ca = 47.134 ± 0.002, 43Ca/44Ca = 0.064950 ± 0.000004, and 46Ca/44Ca = 0.088691 ± 0.000004 (all 2σ), after internal normalization to 44Ca/42Ca = 0.31221.

For mass-dependent Ca isotopic variation, the instrumental mass fractionation is corrected using a 43Ca-44Ca double spike technique, as described in detail in Huang et al. (2010, 2011, 2012), so that natural isotopic variations can be measured. Mass-dependent Ca isotopic variation is reported using δ-notation:
Table 1
Ca isotope compositions of primitive meteorites, eucrite (Juvinas), and lunar anorthosite (60025).

<table>
<thead>
<tr>
<th>Chondrites</th>
<th>Age-corrected</th>
<th>Age-corrected</th>
<th>Age-corrected</th>
<th>Age-corrected</th>
<th>Age-corrected</th>
<th>Age-corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\delta^{44/40})Ca</td>
<td>2(\sigma_m)</td>
<td>(\delta^{42/40})Ca</td>
<td>2(\sigma_m)</td>
<td>(\delta^{44/42})Ca</td>
<td>2(\sigma_m)</td>
</tr>
<tr>
<td>Chondrites</td>
<td>(\delta^{44/40})Ca</td>
<td>2(\sigma_m)</td>
<td>(\delta^{42/40})Ca</td>
<td>2(\sigma_m)</td>
<td>(\delta^{44/42})Ca</td>
<td>2(\sigma_m)</td>
</tr>
<tr>
<td>Murchison</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM2</td>
<td>0.72</td>
<td>0.04</td>
<td>0.38</td>
<td>0.03</td>
<td>0.34</td>
<td>0.05</td>
</tr>
<tr>
<td>Orgueil</td>
<td>0.75</td>
<td>0.08</td>
<td>0.36</td>
<td>0.05</td>
<td>0.40</td>
<td>0.05</td>
</tr>
<tr>
<td>Allende</td>
<td>0.28</td>
<td>0.05</td>
<td>0.14</td>
<td>0.05</td>
<td>0.14</td>
<td>0.02</td>
</tr>
<tr>
<td>Bruderham</td>
<td>L6</td>
<td>0.98</td>
<td>0.07</td>
<td>0.51</td>
<td>0.06</td>
<td>0.47</td>
</tr>
<tr>
<td>Peace River</td>
<td>L6</td>
<td>0.83</td>
<td>0.11</td>
<td>0.43</td>
<td>0.11</td>
<td>0.40</td>
</tr>
<tr>
<td>Guarena</td>
<td>H6</td>
<td>0.91</td>
<td>0.03</td>
<td>0.43</td>
<td>0.06</td>
<td>0.47</td>
</tr>
<tr>
<td>Grady (1937)</td>
<td>H3</td>
<td>0.92</td>
<td>0.04</td>
<td>0.49</td>
<td>0.03</td>
<td>0.44</td>
</tr>
<tr>
<td>Abee</td>
<td>EH</td>
<td>0.90</td>
<td>0.02</td>
<td>0.38</td>
<td>0.04</td>
<td>0.52</td>
</tr>
<tr>
<td>Indarch</td>
<td>EH</td>
<td>0.96</td>
<td>0.02</td>
<td>0.44</td>
<td>0.04</td>
<td>0.52</td>
</tr>
<tr>
<td>Eucrite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juvinas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrestrial basalts and silicate minerals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHVO-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCR-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kilbourne Hole clinopyroxene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Carlos clinopyroxene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Carlos orthopyroxene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sea Water</td>
<td>1.87</td>
<td>0.02</td>
<td>0.91</td>
<td>0.03</td>
<td>0.96</td>
<td>0.02</td>
</tr>
<tr>
<td>NIST SRM 915a</td>
<td>-0.02</td>
<td>0.02</td>
<td>-0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
</tr>
</tbody>
</table>

See text for definition of \(\delta\) and \(\varepsilon\) values, and analytical uncertainty.
where 4i and 4j represent 40, 42 and 44. Combined spiked and unspiked measurements of NIST SRM 915a yield $^{40}\text{Ca}/^{44}\text{Ca}$ of 46.406 ± 0.001 and $^{42}\text{Ca}/^{44}\text{Ca}$ of 0.30985 ± 0.00001 (all 2σm), which are used as normalization values to calculate the δ-values. The reproducibility of $\delta^{44/40}\text{Ca}$ in seawater and NIST SRM 915a over the past 7 years is shown in Fig. 1. This work was all done with the same Faraday cups since the instrument was delivered in 2005.

3. RESULTS

The mass-dependent and mass-independent Ca isotopic variations of chondrites are given in Table 1. The mass-dependent Ca isotopic variations of chondrites are shown in two Ca three-isotope plots, $\delta^{44/40}\text{Ca}$ vs. $\delta^{42/40}\text{Ca}$ and $\delta^{44/42}\text{Ca}$ (Fig. 2). After correction for radiogenic ^{40}Ca ingrowth in two enstatite chondrites, all nine chondrites plot on the mass-dependent fractionation trends, with $\delta^{44/40}\text{Ca}_{\text{SRM}915a}$ ranging from 0.28 to 1.06. Such variation is comparable to that observed in terrestrial silicate rocks, 0.2–1.9 (Fantle and Tipper, 2014), and twice as that observed in martian meteorites, 0.7–1.1 (Magna et al., 2015). Because of the limited $\delta^{44/40}\text{Ca}$ range in these chondrites, the observed $\delta^{44/40}\text{Ca}$ vs. $\delta^{42/40}\text{Ca}$ and $\delta^{44/42}\text{Ca}$ chondrite trends are consistent with several types of fractionation laws, including the exponential law (Fig. 2). The low-$\delta^{44/40}\text{Ca}_{\text{SRM}915a}$ end is defined by carbonaceous chondrites, the high-$\delta^{44/40}\text{Ca}_{\text{SRM}915a}$ end by enstatite chondrites which overlap with the estimate of the Earth based on peridotites (1.05; Huang et al., 2010), and ordinary chondrites are in between these two chondritic groups.

Our unspiked measurements show that at about ±1 and ±2 ε-unit levels, respectively, there are no measurable isotopic anomalies on ^{40}Ca or ^{43}Ca in bulk chondrites, lunar anorthosite 60025 and eucrite Juvinas (Table 1; Fig. 3). In detail, lunar anorthosite 60025 has a $\varepsilon^{43/44}\text{Ca}$ of −1.7 ± 1.6, which is indistinguishable from the measured standard value 0.0 ± 0.7 (Table 1). Ordinary and enstatite chondrites do not show any measurable ^{48}Ca anomaly, and all three carbonaceous chondrites show 2–3 ε-units of ^{48}Ca excess. This result is similar to Ca isotopic studies of refractory inclusions, which did not show measurable mass-independent isotopic variations on ^{40}Ca or ^{43}Ca, but several ε-units of ^{48}Ca excess (Lee et al., 1978, 1979; Jungck et al., 1984; Niederer and Papanastassiou, 1984; Ireland et al., 1992; Moynier et al., 2010; Huang et al., 2012). There is no measurable ^{48}Ca anomaly in lunar anorthosite 60025; however, the eucrite Juvinas has a negative ^{48}Ca anomaly with $\varepsilon^{48/44}\text{Ca}$ of −1.6 ± 1.0 (Table 1).

4. DISCUSSION

4.1. Inter-lab comparison

Calcium isotopic compositions, both mass-dependent and mass-independent, of chondrites have been measured by several groups. A comparison with published data is necessary. Fig. 3a shows a comparison of our $\delta^{44/40}\text{Ca}$ values with published values from Simon and DePaolo (2010), who used a ^{42}Ca–^{48}Ca double spike TIMS technique, and Valdes et al. (2014) and Schiller et al. (2015), both used a sample-standard bracketing technique on a MC-ICP-MS. Because Valdes et al. (2014) and Schiller et al. (2015) could not measure $\delta^{44/40}\text{Ca}$ directly, they reported $\delta^{44/42}\text{Ca}$ data, and the $\delta^{44/40}\text{Ca}$ values were calculated by multiplying their reported $\delta^{44/42}\text{Ca}$ values by two. All published data have been renormalized to SRM915a for comparison. In general, results from three groups agree with each other. However, important discrepancies include:

a. Allende: Our Allende $\delta^{44/40}\text{Ca}$ value, 0.28 ± 0.05, is lower than that by Simon and DePaolo (2010) and Valdes et al. (2014), 0.54 ± 0.05 and 0.55 ± 0.10, respectively. This probably reflects sample heterogeneity, caused by inhomogeneous distribution of refractory inclusions in Allende.

![Fig. 1. Reproducibility of $\delta^{44/40}\text{Ca}$ for seawater and NIST SRM 915a measured with the IsoProbe-T TIMS at Harvard University since 2007. This work was all done with the same Faraday cups since the instrument was delivered in 2005. The cited errors are 2σm of multiple analyses. Two $^{43}\text{Ca}–^{48}\text{Ca}$ double spike solutions have been used during the course of our analyses (see Huang et al., 2011 for a detailed discussion).](image-url)
b. Enstatite chondrites: Except for Indarch, the enstatite chondrite \(^{44}/^{40}\text{Ca} \) values from Simon and DePaolo (2010), in general, are significantly higher than that by Valdes et al. (2014) and this study, which agree well. The enstatite chondrites measured by Simon and DePaolo (2010) have been pre-cleaned using water prior to the handling by Simon and DePaolo (2010), which may dissolve oldhamite (CaS), the main Ca carrier in enstatite chondrites. However, the leachate of an enstatite chondrite, Indarch, yields \(^{44}/^{40}\text{Ca} \) of 1.10 (Valdes et al., 2014). Therefore, the origin for the higher enstatite chondrite \(^{44}/^{40}\text{Ca} \) values by Simon and DePaolo (2010) is still unclear. In our following discussion, enstatite chondrite \(^{44}/^{40}\text{Ca} \) values by Simon and DePaolo (2010) are not included.

c. CI chondrites: Orgueil has been measured by Valdes et al. (2014) and in this study, which yield similar \(^{44}/^{40}\text{Ca} \) (0.65 ± 0.05 vs. 0.75 ± 0.08) (Fig. 3a). However, Ivuna measured by Schiller et al. (2015) has \(^{44}/^{40}\text{Ca} \) of 1.13 ± 0.09. Since this is the only chondrite studied by Schiller et al. (2015), the origin of the high \(^{44}/^{40}\text{Ca} \) for Ivuna is unclear.

Fig. 3b shows a comparison of our mass-independent Ca isotopic effects with published values (Simon et al., 2009; Moynier et al., 2010; Chen et al., 2011; Dauphas et al., 2014; Schiller et al., 2015). In general, there are good agreements among results from different groups. Except for one ordinary chondrite Dhajala, at ±1 \(\varepsilon \)-unit level, there is no measureable \(^{40}/^{44}\text{Ca} \) variation in measured chondrites. At ±2 \(\varepsilon \)-unit level, there is no measureable \(^{43}/^{44}\text{Ca} \) variation in all measured chondrites. At ±1 \(\varepsilon \)-unit level, there is no measureable \(^{48}/^{44}\text{Ca} \) variation in all measured ordinary and enstatite chondrites. However, all measured carbonaceous chondrites, except for Allende measured by Moynier et al. (2010), have \(^{48}/^{44}\text{Ca} \) of 2–4. Allende measured in this study has \(^{48}/^{44}\text{Ca} \) of 2.9 ± 0.6. In contrast, Allende measured by Moynier et al. (2010) has \(^{48}/^{44}\text{Ca} \) of 0.0 ± 0.8, which is not included in our following discussion.

4.2. Mass-dependent and mass-independent Ca isotopic variations in bulk chondrites

Spike and unspiked Ca isotopic measurements show that Ca exhibits both mass-dependent and mass-independent isotopic variations in both bulk chondrites and their
Fig. 3. (a) Comparison of published $\delta^{40/44}$Ca values in chondrites. All values are re-normalized to SRM 915a. (b) Comparison of published $\varepsilon^{40/44}$Ca, $\varepsilon^{43/44}$Ca and $\varepsilon^{48/44}$Ca in chondrites and a eucrite, Juvinas.
components, refractory inclusions (Fig. 4). In detail, refractory inclusions have much larger isotopic variations, both mass-dependent and mass-independent, than bulk chondrites, and they define different fields in this $\delta^{44/40}\text{CaSRM915a}$ vs. $\epsilon^{48/44}\text{Ca}$ diagram (Fig. 4b). This makes Ca the only major element other than O which shows both type of isotopic variations in chondrites and their components.

4.3. Isotopic and chemical variations within chondrites and their relationship to the Earth

Chondrites are primitive meteorites that escaped parental body differentiation processes; however, they exhibit large chemical and isotopic (up to per mil level) variations. Jagoutz et al. (1979) showed that chondrites form a positive Al/Si vs. Mg/Si trend, at a high angle with the negative trend defined by terrestrial peridotites. The negative terrestrial trend is controlled by partial melting, because Al is incompatible and Mg is compatible during partial melting. The positive chondrite trend was suggested to reflect “cosmochemical fractionation” by Jagoutz et al. (1979), which might reflect that the element volatility increases in the order of Al < Mg < Si (e.g., Petaev and Wood, 1998; Lodders, 2003). However, Drake and Righter (2002) termed this trend as “an unexplained trend”. Dauphas et al. (2015) showed that within chondrites, Mg/Si ratio is positively correlated with $\delta^{30}\text{Si}$. They interpreted this trend as a result of removal of solid olivine from the Solar nebula. Traditionally, the plot of Al/Si vs. Mg/Si is used to constrain the composition of the Earth. That is, the Earth’s composition is believed to be at the intersection between the negative terrestrial peridotite trend and the positive

![Graph](image-url)

Fig. 4. (a) $\delta^{44/40}\text{Ca}$ vs. $\epsilon^{48/44}\text{Ca}$ for chondrites. Data are from Simon et al. (2009), Moynier et al. (2010), Simon and DePaolo (2010), Valdes et al. (2014), Schiller et al. (2015) and this study. Estimates of Earth are from Huang et al. (2010). $\delta^{44/40}\text{Ca}_{\text{Earth}} = \delta^{44/40}\text{Ca}_{\text{SRM915a}} - 1.05$. (b) $\delta^{44/40}\text{Ca}$ vs. $\epsilon^{48/44}\text{Ca}$ for chondrites compared to refractory inclusions. Refractory data are from the compilation of Clayton et al. (1988) and Huang et al. (2012).
chondrite trend, close to where the carbonaceous chondrites plot (e.g., Jagoutz et al., 1979; McDonough and Sun, 1995; Drake and Righter, 2002).

Is there an isotopic-element correlation involving Ca in chondrites, similar to the Mg/Si vs. δ^{30}Si trend identified by Dauphas et al. (2015)? Our chondrite $\delta^{44}/40$Ca data are negatively correlated with Ca/Mg ratios (Fig. 5): carbonaceous chondrites define the high-Ca/Mg and low-$\delta^{44}/40$Ca end, and enstatite chondrites define the low-Ca/Mg and high-$\delta^{44}/40$Ca end. The Earth estimate does not plot on or at the extension of the chondrite trend. However, addition of published $\delta^{44}/40$Ca data from Simon and DePaolo (2010), Valdes et al. (2014) and Schiller et al. (2015) makes this trend scatter, because of the high $\delta^{44}/40$Ca values from CO chondrites (Fig. 3a). Particularly, CO3 Felix has $\delta^{44}/40$Ca of 1.2. Excluding the enstatite chondrites studied by Simon and DePaolo (2010) (see Section 4.1), this is the highest $\delta^{44}/40$Ca among all chondrites studied so far (Fig. 3a).

What caused such Ca/Mg vs. $\delta^{44}/40$Ca correlation in chondrites? Most refractory inclusions, especially the ones with Group II rare earth element (REE) patterns, are characterized by low $\delta^{44}/40$Ca (e.g., Huang et al., 2012; Fig. 4), and they are also enriched in Ca and Al relative to Si and Mg (e.g., MacPherson, 2004). They can be one possible candidate for the high-Ca/Mg and low-$\delta^{44}/40$Ca endmember. Consistent with this interpretation is the Ca isotopic and REE elemental differences between CV3 Allende and CI1 Orgueil. CV3 Allende has a lower $\delta^{44}/40$Ca than CI1 Orgueil (Fig. 3a), and it has been known that compared to Orgueil, Allende has a Group II REE pattern (e.g., Pourmand et al., 2012; Barrat et al., 2012; Dauphas and Pourmand, 2015). Huang et al. (2012) showed that refractory inclusions with Group II REE patterns have much lower $\delta^{44}/40$Ca than those with unfractionated REE patterns and the bulk Earth estimate. However, CI Orgueil has $\delta^{44}/40$Ca lower than ordinary and enstatites chondrites (Fig. 3a), and it only contains negligible amount of refractory inclusions (Hezel et al., 2008). Therefore, in addition to refractory inclusions, the $\delta^{44}/40$Ca variation in chondrites must have other origins. For example, Simon and DePaolo (2010) proposed that kinetic effect caused by supercooling occurred during Solar nebular condensation might play a role fractionating Ca isotopes.

![Fig. 5. $\delta^{44}/40$Ca vs. Ca/Mg and δ^{18}O for chondrites. Ca data from this study are shown in color, and they form a negative $\delta^{44}/40$Ca vs. Ca/Mg trend. Literature data are shown in grey. Ca data are from Fig. 3. Elemental data are from Mason (1966), Baadsgaard et al. (1964), Jarosewich and Mason (1969), Kallemeyn and Wasson (1981, 1986), Grossman et al. (1985), Anders and Grevesse (1989), Kallemeyn et al. (1989), and Jarosewich (1990). Oxygen data are from Clayton et al. (1991), Clayton and Mayeda (1999), Newton et al. (2000), and Herd et al. (2013). Estimates of Earth are from McDonough and Sun (1995) and Huang et al. (2010).](image-url)
In a $\delta^{44/40}$Ca vs. Ca/Mg plot, the Earth plots close to CO chondrites; however, carbonaceous chondrites have very different δ^{18}O than the Earth (Fig. 5), implying that the processes that made the Earth are fundamentally different from those that made the chondrites. It is now well established that the Earth and enstatite chondrites share almost the same isotopic characteristics (e.g., Figs. 2 and 4–6; Clayton, 2003 for O; this study for Ca; see summary in Huang et al., 2013 for 142Nd; see Kaminski and Javoy, 2013 for a more complete summary), but they have different chemical compositions (e.g., Fig. 5; Jagoutz et al., 1979; Wasson and Kallemeyn, 1988; Jarosewich, 1990; Drake and Righter, 2002). In order to explain the chemical difference between Earth and enstatite chondrites, Jacobsen et al. (2013) proposed that the Earth and the enstatite chondrites formed from the same parental nebular reservoir, but experienced different condensation processes. Specifically, enstatite chondrites formed in an H-poor environment with high f_{S_2} (at Fe–FeS buffer) and low f_{O_2} (at CO–CO$_2$ buffer) (e.g., Lehner et al., 2013).

4.4. Correlations among neutron-rich isotopes in bulk chondrites: 48Ca, 50Ti and 54Cr

The nucleosynthetic origin of 48Ca is not fully understood. It has 28 neutrons and 20 protons; consequently, it requires special neutron-rich processes (e.g., Cameron, 1979) during Type Ia supernova explosion (Meyer et al., 1996; Woosley, 1997) and electron-capture supernova explosion (Wanajo et al., 2013). Large 48Ca excess has been first observed in FUN CAI EK 1-4-1 (Lee et al., 1978, 1979), and HAL-like hibonites are found to have negative 48Ca anomalies (Lee et al., 1979; Ireland et al., 1992). Subsequent studies on refractory inclusions and bulk carbonaceous chondrites also revealed several ε-units of 48Ca excess (Jungck et al., 1984; Niederer and Papanastassiou, 1984; Moynier et al., 2010; Huang et al., 2012; this study; Fig. 4).

More recent studies also reported nucleosynthetic anomalies of 50Ti and 54Cr, another two neutron-rich isotopes, in bulk chondrites (e.g., Trinquier et al., 2007, 2008, 2009; Leya et al., 2008; Yin et al., 2009; Dauphas et al., 2010; Qin et al., 2010; Zhang et al., 2012). As shown in a summary diagram (Warren, 2011 following Yin et al., 2009), carbonaceous chondrites form a negative ε^{54}Cr vs. ε^{50}Ti trend, and ordinary and enstatite chondrites and other differentiated meteorites form a positive ε^{54}Cr vs. ε^{50}Ti trend, implying that at least three endmembers are required for these two neutron-rich isotopes. 48Ca data also add to the story (Dauphas et al., 2014; Fig. 6). Dauphas et al. (2014) showed that bulk meteorites define a linear trend in a plot of $\varepsilon^{50/44}$Ca vs. ε^{50}Ti. We found that new measurements from CM chondrites also plot on this chondrite trend.

![Fig. 6](image-url)
(Fig. 6a). CV and CO chondrites define the high $\varepsilon^{48/44}$Ca and ε^{50}Ti end of this chondrite trend. Earth and enstatite chondrites have essentially the same $\varepsilon^{48/44}$Ca and ε^{50}Ti. Compared to Earth and enstatite chondrites, ordinary chondrites have unresolvable $\varepsilon^{48/44}$Ca, but slightly lower ε^{50}Ti.

In a plot of $\varepsilon^{48/44}$Ca vs. ε^{54}Cr, clearly at least three endmembers can be inferred (Fig. 6). Carbonaceous chondrites form a negative $\varepsilon^{48/44}$Ca vs. ε^{48}Cr trend. Earth, enstatite chondrites and ordinary chondrites form a vertical trend with overlapping $\varepsilon^{48/44}$Ca but variable ε^{48}Cr. Compared to Earth and enstatite chondrites, ordinary chondrites have the same $\varepsilon^{48/44}$Ca, but lower ε^{48}Cr.

Chen et al. (2011) studied the relationship of $\varepsilon^{48/44}$Ca vs. ε^{50}Ti and ε^{54}Cr in differentiated meteorites, and they concluded that the observed isotopic anomalies in neutron-rich isotopes, ε^{48}Ca, ε^{50}Ti and ε^{54}Cr, reflect contributions from a rare subset of neutron-rich Type Ia supernova. In fact, ejecta from Type Ia (Woosley, 1997) and electron-capture supernova explosions (Wanajo et al., 2013) could have variable ε^{50}Ti/ε^{48}Ca and ε^{54}Cr/ε^{48}Ca according to their different ignition density conditions. Although Dauphas et al. (2014) emphasized on the linearity of the $\varepsilon^{48/44}$Ca vs. ε^{50}Ti trend formed by chondrites, the relationship among chondrites in a plot of $\varepsilon^{48/44}$Ca vs. ε^{54}Cr clearly demonstrates that at least three endmembers are required for the neutron-rich isotopic anomalies (Warren, 2011; Fig. 6), assuming these endmembers have similar Cr/Ca ratios. In this case, it is assumed, these endmembers have similar Cr/Ca ratios. Alternatively, the $\varepsilon^{48/44}$Ca vs. ε^{54}Cr relationship in chondrites may also be explained by two isotopic endmembers, which could have variable Cr/Ca ratios during condensation, because Cr is more volatile than the highly refractory Ti and Ca (e.g., Lodders, 2003). In this circumstance, multiple supernova origins are not required for ε^{48}Ca, ε^{50}Ti and ε^{54}Cr in chondrites.

4.5. Correlation between ε^{48}Ca anomaly and mass-independent O isotopic variation

The origin of the mass-independent O isotopic variation has been a puzzle (e.g., Clayton, 2011), and the current most popular interpretation is the “self-shielding” model, a photochemical process (e.g., Thiemens and Heidenreich, 1983; Clayton, 2002; Lyons and Young, 2005). Consequently, mass-independent O isotopic variation, Δ^{17}O, is not expected to be correlated with nucleosynthetic anomalies. However, Trinquier et al. (2007), Yin et al. (2009) and Warren (2011) showed nice correlation between Δ^{17}O and ε^{54}Cr. In detail, carbonaceous chondrites as one group, and enstatite and ordinary chondrites and differentiated meteorites as another group form two subparallel, positive Δ^{17}O–ε^{54}Cr trends. Interestingly, such correlation is also extended to ε^{48}Ca (Fig. 7). Primitive and differentiated chondrites form a “n” shape in a plot of $\varepsilon^{48/44}$Ca vs. Δ^{17}O: the left leg is formed of differentiated meteorites, the right leg is formed of carbonaceous chondrites, and they are bridged by Earth–Moon, Mars, ordinary and enstatite chondrites. That is, any meteorites with negative Δ^{17}O show some ε^{48}Ca anomaly, either positive or negative. It is possible that the CO self-shielding process that generated the Δ^{17}O variations in the Solar System occurred after the neutron-rich isotopes were delivered to the Solar System and before they were completely homogenized. Alternatively, this type of correlation between nucleosynthetic anomalies and Δ^{17}O (Trinquier et al., 2007; Yin et al., 2009; Warren, 2011; Fig. 7) implies that Δ^{17}O variation in the Solar System may reflect variable contribution from a 18O-poor carrier (s) (Krot et al., 2010; Kööp et al., 2016a,b), i.e., nucleosynthetic origin.

An interesting question is where the Sun plots in this diagram. The Sun has a very negative Δ^{17}O at about −30 (McKeegan et al., 2011). If the Sun plots on the carbonaceous chondrite trend, it is predicted to have ε^{48}Ca excess.
If it plots on the differentiated meteorite trend, then it should be characterized by ^{48}Ca deficit. Since the Solar System is dominated by the Sun, the exact ^{48}Ca anomaly of the Sun provides important constraint on the amount of supernova material that contaminated the Solar nebula.

5. SUMMARY

1. There is \sim1‰ $^{44}/^{40}\text{Ca}$ variation within chondrites, which is comparable to that reported for terrestrial silicate rocks (Fauttie and Tipper, 2014), and twice as that reported for martian meteorites (Magna et al., 2015). $^{44}/^{40}\text{Ca}$ variation in chondrites has multiple origins.

2. At ± 1 and ± 2 ε-unit levels, respectively, there is no measurable ^{48}Ca or ^{48}Ca anomaly in chondrites, the Moon and a eucrite. Up to several ε-units of ^{48}Ca anomalies have been observed in carbonaceous chondrites (positive) and differentiated meteorites (most negative).

3. Relationship among neutron-rich isotopes (^{48}Ca, ^{50}Ti and ^{54}Cr) in chondrites imply that they may have multiple supernova origins.

4. The Earth and enstatite chondrites share almost the same isotopic signatures, but different chemical compositions. It is possible that they originated from the same parent nebular reservoir but experienced different condensation paths.

5. The relationship between mass-independent O isotopic variations and nucleosynthetic anomalies in neutron-rich isotopes may yield important constraint on the timing of the CO self-shielding process. Alternatively, the $\Delta^{17}\text{O}$ variation within the Solar System may have a nucleosynthetic origin (Krot et al., 2010; Kööp et al., 2016a,b).

6. The Sun is predicted to have either ^{48}Ca excess or deficit compared to the Earth, and presumably all other neutron-rich isotopes, such as ^{50}Ti and ^{54}Cr.

7. CAIs cannot be taken as representative of the initial isotopic compositions of refractory elements like Ca for the Earth–Moon system.

ACKNOWLEDGEMENT

This work was supported by NASA Cosmochemistry Grants NNX12AH65G and NNX15AH66G. We thank constructive reviews from A. M. Davis, C. D. Williams and J. I. Simon, and editorial handling by Q.-Z. Yin.

REFERENCES

Associate editor: Qing-Zhu Yin