1. Let κ be a regular uncountable cardinal. Prove that the intersection of two club subsets of κ is unbounded. Make sure to cite where you use that the club sets are closed and where you use that they are unbounded.

2. Let κ be a regular uncountable cardinal, $\lambda < \kappa$, and $\langle C_\alpha \mid \alpha < \lambda \rangle$ be a sequence of club subsets of κ. Show $\bigcap_{\alpha < \lambda} C_\alpha$ is unbounded.

3. Let κ be a regular, uncountable cardinal and $\langle C_\alpha \mid \alpha < \kappa \rangle$ be a sequence of club subsets of κ. Show $\Delta_{\alpha < \kappa} C_\alpha$ is also club.

4. Prove Fodor’s Theorem: Let κ be a regular uncountable cardinal. If f is a regressive function on a stationary set $S \subseteq \kappa$, then there exist stationary $T \subseteq S$ such that f restricted to T is constant.

5. Let $\kappa \geq \omega_2$ be a regular cardinal and let F be the club filter on κ. Prove that F cannot be an ultrafilter.