Analysis of Alternatives for Accommodating Trucks on Urban Freeways in Southern Nevada

Project Team
Eric Sandgren, Ph.D
Dean
Howard R. Hughes College of Engineering
4505 Maryland Parkway, Box 454007
Las Vegas, NV 89154-4007

Ken Peck, Ph.D
Co-Director
Transportation Research Center
4505 Maryland Parkway, PO Box 454015
Las Vegas, NV 89154-4015

Vinod Vasudevan, Ph.D., P.E.
Associate Research Engineer & Program Manager
Transportation Research Center
University of Nevada, Las Vegas
4505 S. Maryland Pkwy, Mail Stop 454007
Las Vegas, NV 89154-4007

Alexander Paz, Ph.D.
Assistant Professor
Civil and Environmental Engineering
4505 Maryland Parkway, PO Box 454015
Las Vegas, NV 89154-4015

Farhan Khan
Graduate Research Assistant

Majrooh James
Graduate Research Assistant

External Project Contact
Reed Gibby, Nevada DOT
Bruce Turner, RTC of Southern Nevada
Beth Xie, RTC of Southern Nevada
Project Objective
The objective of this research study is to evaluate short-term operational strategies (e.g., truck restriction, truck only lane) in dealing with existing and near-term growth in truck traffic and long-term strategies (truck only toll and truckways with toll) to accommodate the future truck traffic on urban freeways in Las Vegas. In the evaluation, the mobility and safety benefits of various strategies on accommodating the existing and projected truck traffic in Las Vegas urban freeways will be quantified. Based on the comparison of the strategies with different truck flow forecasts in future, the best strategy for short-term and long-term on accommodating truck traffic on congested urban freeways will be recommended.

Project Orientation
Truck operation alternative evaluation

Project Abstract
To achieve the objective of the study, it is proposed to evaluate various alternatives for truck routing in the Las Vegas metropolitan area. The field observation will quantify the safety hazards when truck and passenger vehicles are operated on mixed use lanes. In performing the field observations, videos of traffic including both trucks and general traffic cameras will be recorded at selected locations on the freeways in the Las Vegas area. Visual observations can be made based on the videos for hazard situations for accidents (e.g., a passenger vehicle running beside a truck, between two trucks, before a truck, or after a truck). The data derived from visual observations can than be analyzed. Traffic simulation can be used for evaluating both the safety impact and the mobility impact of different truck strategies. From the simulation model, the same type of data as those collected based on videos can be derived because simulation model can display the animated traffic. In addition, other criteria related to safety such as speed can be derived for longer period of time. To addition to evaluating safety impact, the traffic simulation model can be used to evaluate the operation situations and mobility performance of different strategies based on analyzing the relevant measures of effectiveness from the model.

Project Task
Task 1 Literature Review
Task 2 Conduct Surveys
Task 3 Forecast Demands
Task 4 Field Study
Task 5 Safety Analysis
Task 6 Final Report

Project Milestones
Literature review was completed
The project scope is redesigned to accommodate stakeholder’s requirements

Total Budget
$98,900
Project Duration
Start Date : 2007-09-01
End Date : 2010-12-31

Student Involvement
Theresa Bray
Undergraduate Student, Department of Civil and Environmental Engineering
University of Nevada, Las Vegas
Howard R. Hughes College of Engineering
4505 Maryland Parkway, Box 454007
Las Vegas, NV 89154-4007

Relationship to Other Project
Safety analysis performed in the is project will be used in the project titled “Analysis, Modeling and Design for Traffic Incident Management Systems”.

Technology Transfer Activities
Website is already developed to distribute information on the projects. Several journal papers are being prepared based on this study.

Potential Project Benefits
The level of service on the freeway network will continue to deteriorate as freeway volumes, including large trucks continue to grow. Already many freeway segments operate at level E or F for several hours on weekdays. This growth in freeway traffic will result in higher traffic densities, lower traffic speeds, longer travel times, and increases in crash rates. Other adverse consequences include increased fuel consumption and deterioration of air quality, together with all the corresponding economic loses. This project will lead to a more rational and cost-effective process to invest highway funds, a task that gets harder and harder to achieve these days because of revenue short-falls.