Chapter 6
Ionic Compounds

Have your i-clickers ready
Silence cell phones and pagers.
Octet Rule

An octet
- Contains 8 valence electrons.
- Is associated with the stability of the noble gases.
- Exception is He that is stable with 2 valence electrons (duet).

<table>
<thead>
<tr>
<th>Element</th>
<th>Valence Electrons</th>
<th>Octet Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Ne</td>
<td>2, 8</td>
<td>8</td>
</tr>
<tr>
<td>Ar</td>
<td>2, 8, 8</td>
<td>8</td>
</tr>
<tr>
<td>Kr</td>
<td>2, 8, 18, 8</td>
<td>8</td>
</tr>
</tbody>
</table>
Review: Valence Electrons

The valence electrons

• Are the electrons in the s and p sublevels in the highest energy level.
• Are related to the Group number of the element.
• Determine the chemical properties of the elements.
• Elements with similar properties have the same number of valence electrons!
Forming Octets

Atoms acquire octets

• By losing, gaining, or sharing valence electrons.

• To form compounds.

• To become more stable.
Atomic Size

Atomic radius

• Is the distance from the nucleus to the valence electrons.
Sizes of Metal Atoms and Ions

A positive ion

• Has lost its valence electrons.
• Is smaller (about half the size) than its corresponding metal atom.
Size of Sodium Ion

The sodium ion Na⁺

- Forms when the Na atom loses one electron from the 3rd energy level, its valence electron.
- Is smaller than a Na atom.
Sizes of Nonmetal Atoms and Ions

A negative ion

- Has a complete octet.
- Increases the number of valence electrons.
- Is larger (about twice the size) than its corresponding metal atom.
Size of Fluoride Ion

The fluoride ion F^-
- Forms when a valence electron is added.
- Has increased repulsions due to the added valence electron.
- Is larger than F atom
Ionic and Covalent Bonds

Ionic bonds involve
• Loss of electrons by a metal.
• Gain of electrons by a nonmetal.

Covalent bonds involve
• A sharing of electrons.
Metals Form Positive Ions

Metals form

- Octets by *losing* all of their valence electrons.
- Positive ions with the electron configuration of the nearest noble gas.
- *Positive ions* with fewer electrons than protons.

Group 1A(1) metals \[\rightarrow\] ion $^{\text{1}+}$
Group 2A(2) metals \[\rightarrow\] ion $^{\text{2}+}$
Group 3A(13) metals \[\rightarrow\] ion $^{\text{3}+}$
Formation of a Sodium Ion, Na⁺

Sodium achieves an octet by losing its one valence electron.
Charge of Sodium Ion, Na$^+$

With the loss of its valence electron, the sodium ion has a 1+ charge.

<table>
<thead>
<tr>
<th>Sodium atom</th>
<th>Sodium ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>11p$^+$</td>
<td>11p$^+$</td>
</tr>
<tr>
<td>11e$^-$</td>
<td>10e$^-$</td>
</tr>
<tr>
<td>0</td>
<td>1+</td>
</tr>
</tbody>
</table>
Formation of Mg^{2+}

- Magnesium achieves an octet by losing its two valence electrons.
Charge of Magnesium Ion \(\text{Mg}^{2+} \)

With the loss of two valence electrons, magnesium forms a positive ion with a 2+ charge.

\[
\begin{array}{ll}
\text{Mg atom} & \text{Mg}^{2+} \text{ ion} \\
12p^+ & 12p^+ \\
12e^- & 10e^- \\
0 & 2+
\end{array}
\]

Copyright © 2008 by Pearson Education, Inc. Publishing as Benjamin Cummings
Formation of Negative Ions

In ionic compounds, nonmetals
- Achieve an octet arrangement.
- Gain electrons.
- Form negatively charged ions with 3-, 2-, or 1- charges.
Formation of Chloride Ion, Cl⁻

- Chlorine achieves an octet by adding an electron to its valence electrons.
Charge of a Chloride Ion, Cl⁻

A chlorine ion forms
- When Cl gains one electron
- With a 1- charge.

Chlorine atom Chloride ion
17p⁺ 17p⁺
17e⁻ 18e⁻
0 1⁻
Some Ionic Charges

<table>
<thead>
<tr>
<th>Group Number</th>
<th>Number of Valence Electrons</th>
<th>Electron Change to Give an Octet</th>
<th>Ionic Charge</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A (1)</td>
<td>1</td>
<td>Lose 1</td>
<td>1+</td>
<td>Li⁺, Na⁺, K⁺</td>
</tr>
<tr>
<td>2A (2)</td>
<td>2</td>
<td>Lose 2</td>
<td>2+</td>
<td>Mg²⁺, Ca²⁺</td>
</tr>
<tr>
<td>3A (13)</td>
<td>3</td>
<td>Lose 3</td>
<td>3+</td>
<td>Al³⁺</td>
</tr>
<tr>
<td>Nonmetals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5A (15)</td>
<td>5</td>
<td>Gain 3</td>
<td>3−</td>
<td>N³⁻, P³⁻</td>
</tr>
<tr>
<td>6A (16)</td>
<td>6</td>
<td>Gain 2</td>
<td>2−</td>
<td>O²⁻, S²⁻</td>
</tr>
<tr>
<td>7A (17) I⁻</td>
<td>7</td>
<td>Gain 1</td>
<td>1−</td>
<td>F⁻, Cl⁻, Br⁻,</td>
</tr>
</tbody>
</table>
Ionic Charge from Group Numbers

• The charge of a positive ion is equal to its Group number.

 Group 1A(1) = 1+
 Group 2A(2) = 2+
 Group 3A(13) = 3+

• The charge of a negative ion is obtained by subtracting 8 or 18 from its Group number.

 Group 6A(16) = 6 - 8 = 2-
 or 16 - 18 = 2-
Upon loss or gain of electrons, the electronic arrangement of the ion is “**isoelectronic**” with its nearest noble gas.
Octet Rule - What is special about “8”?

An octet

• Is 8 valence electrons
• Is associated with the stability of the noble gases
• He is stable with two valence electrons (duet).

<table>
<thead>
<tr>
<th>Element</th>
<th>Valence Electrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>1s²</td>
</tr>
<tr>
<td>Ne</td>
<td>1s² 2s² 2p⁶</td>
</tr>
<tr>
<td>Ar</td>
<td>1s² 2s² 2p⁶ 3s² 3p⁶</td>
</tr>
<tr>
<td>Kr</td>
<td>1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶</td>
</tr>
</tbody>
</table>
Quiz Questions 1-4

[30 seconds for each question]
Select the correct answer for aluminum 3A(13):

1. Number of valence electrons (1 pt)
 A) 1e- B) 2e- C) 3e-

2. Electron change for octet (1 pt)
 A) loss of 3e- B) gain of 3e- C) gain of 5e-

3. Ionic charge of aluminum ion (1 pt)
 A) 3- B) 13- C) 3+

4. The symbol for the aluminum ion (2 pt)
 1) Al^{3+} 2) Al^{3-} C) Al^+

 A B C
Quiz Questions 5 - 8
[30 seconds for each question]

Select the correct answer for sulfur 6A(17):

5. Number of valence electrons (1 pt)
 A) 4e- B) 6e- C) 8e-

6. Change in electrons for octet (1 pt)
 A) loss of 2e- B) gain of 2e- C) gain of 8e-

7. Ionic charge of sulfide ion (1 pt)
 A) 2+ B) 2- C) 4-

8. The symbol for the sulfide ion (2 pt)
 A) S\(^{1-}\) B) S\(^{1+}\) C) S\(^{2-}\)
• Compounds - Compounds result from the formation of chemical bonds between two or more different elements.
Chemical bond: attractive force holding two or more atoms together.
Ionic Bonds - electron transfer process. Typically between a metal and a nonmetals

Covalent Bonds - electrons shared. Typically involving nonmetals.
Ionic Compounds

Ionic compounds
• Consist of positive and negative ions.
• Have *ionic bonds* between positively and negatively charged ions.
• Have high melting and boiling points.
• Are solid at room temperature.
Salt is An Ionic Compound

Sodium chloride (table salt) is an example of an ionic compound.
An ionic formula

- Consists of positively and negatively charged ions.
- Is neutral.
- Has charge balance.
 \[
 \text{total positive charge} = \text{total negative charge}
 \]
- Uses subscripts to indicate the number of ions needed to give charge balance.
Ionic Formula of NaCl

In an ionic formula

- The symbol of the metal is written first followed by the symbol of the nonmetal.
- The charges of the ions in the compound are not shown.
Charge Balance in NaF

- The formulas of ionic compounds are determined from the charges on the ions.

\[\text{atoms} \quad \rightarrow \quad \text{ions} \]

\[\text{sodium} \quad + \quad \text{fluorine} \quad \rightarrow \quad \text{sodium fluoride} \]

\[\text{Na}^+ \quad \text{F}^- \quad = \quad \text{NaF} \]

\[(1+) \quad + \quad (1-) \quad = \quad 0 \]

The overall charge of NaF is zero (0).
Charge Balance In MgCl$_2$

In forming MgCl$_2$

- A Mg atom loses two valence electrons.
- Two Cl atoms each gain one electron.

Loses $2e^-$ Each gains $1e^-$

One magnesium ion \(\text{Mg}^{2+} \)
Two chloride ions \(2\text{Cl}^- \)

\[
(2^+) + 2(1^-) = 0
\]

\(\text{MgCl}_2, \text{magnesium chloride} \)
Using Lewis Electron Dot Symbols

\[\text{Ca} + \text{Br} \rightarrow \text{CaBr}_2 \]
Using Lewis Electron Dot Symbols

\[\text{Al} + \text{N} \rightarrow \text{Al}^3+ + \text{N}^3- \]
Writing Ionic Formulas from Charges

Charge balance is used to write the formula for sodium nitride, a compound containing Na$^+$ and N$^{3-}$.

\[
\begin{align*}
3 & \quad \text{Na}^+ \\
& + \quad \text{N}^{3-} \\
\hline
& = \quad \text{Na}_3\text{N}
\end{align*}
\]

\[
3(+1) \quad + \quad 1(3-) \quad = \quad 0
\]

Note: the subscript 3 for three sodium ions.
Formula from Ionic Charges

Write the ionic formula of the compound with Ba\(^{2+}\) and Cl\(^{-}\).

- Write the symbols of the ions.
 \[
 \text{Ba}^{2+} \quad \text{Cl}^{-}
 \]

- Balance the charges.
 \[
 \text{Ba}^{2+} \quad \text{Cl}^{-} \quad \text{two Cl}^{-} \text{ needed}
 \]

- Write the ionic formula using a *subscript 2* for two chloride ions.
 \[
 \text{BaCl}_2
 \]
Learning Check

Write the correct formula for the ionic compounds formed by the following ions:

1. Na\(^+\) and S\(^2-\)
 - A) NaS
 - B) Na\(_2\)S
 - C) NaS\(_2\)

2. Al\(^{3+}\) and Cl\(^-\)
 - A) AlCl\(_3\)
 - B) AlCl
 - C) Al\(_3\)Cl

3. Mg\(^{2+}\) and N\(^3-\)
 - A) MgN
 - B) Mg\(_2\)N\(_3\)
 - C) Mg\(_3\)N\(_2\)
Naming and Writing Ionic Formulas
Naming of Ionic Compounds

In the name of an ionic compound

• The positive ion (first ion) is named as the element.

• The negative ion (second ion) is named by changing the end of the element name to –ide.
Names of Some Common Ions

Table 6.3 Formulas and Names of Some Common Ions

<table>
<thead>
<tr>
<th>Group Number</th>
<th>Formula of Ion</th>
<th>Name of Ion</th>
<th>Group Number</th>
<th>Formula of Ion</th>
<th>Name of Ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals</td>
<td></td>
<td></td>
<td>Nonmetals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A (1)</td>
<td>Li$^+$</td>
<td>Lithium</td>
<td>5A (15)</td>
<td>N$^{3-}$</td>
<td>Nitride</td>
</tr>
<tr>
<td></td>
<td>Na$^+$</td>
<td>Sodium</td>
<td></td>
<td>P$^{3-}$</td>
<td>Phosphide</td>
</tr>
<tr>
<td></td>
<td>K$^+$</td>
<td>Potassium</td>
<td>6A (16)</td>
<td>O$^{2-}$</td>
<td>Oxide</td>
</tr>
<tr>
<td>2A (2)</td>
<td>Mg$^{2+}$</td>
<td>Magnesium</td>
<td>7A (17)</td>
<td>F$^-$</td>
<td>Fluoride</td>
</tr>
<tr>
<td></td>
<td>Ca$^{2+}$</td>
<td>Calcium</td>
<td></td>
<td>Cl$^-$</td>
<td>Chloride</td>
</tr>
<tr>
<td></td>
<td>Ba$^{2+}$</td>
<td>Barium</td>
<td></td>
<td>Br$^-$</td>
<td>Bromide</td>
</tr>
<tr>
<td>3A (13)</td>
<td>Al$^{3+}$</td>
<td>Aluminum</td>
<td></td>
<td>I$^-$</td>
<td>Iodide</td>
</tr>
</tbody>
</table>
Learning Check

Complete the names of the following ions:

<table>
<thead>
<tr>
<th>Ion</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Ba}^{2+})</td>
<td>barium</td>
</tr>
<tr>
<td>(\text{Al}^{3+})</td>
<td>aluminum</td>
</tr>
<tr>
<td>(\text{K}^+)</td>
<td>potassium</td>
</tr>
<tr>
<td>(\text{N}^{3-})</td>
<td>nitride</td>
</tr>
<tr>
<td>(\text{O}^{2-})</td>
<td>oxide</td>
</tr>
<tr>
<td>(\text{F}^-)</td>
<td>fluoride</td>
</tr>
<tr>
<td>(\text{P}^{3-})</td>
<td>phosphide</td>
</tr>
<tr>
<td>(\text{S}^{2-})</td>
<td>sulfide</td>
</tr>
<tr>
<td>(\text{Cl}^-)</td>
<td>chloride</td>
</tr>
</tbody>
</table>
Naming Ionic Compounds with Two Elements

To name a compound that contains two elements:

- Identify the cation and anion.
- Name the positive metal ion (cation) as the element.
- Name the anion by changing the ending to *ide*.
- Name the cation first followed by the name of the anion.
Charges of Representative Elements
Guide to Naming

Guide to Naming Ionic Compounds with Metals That Form a Single Ion

STEP 1
Identify the cation and anion.

STEP 2
Name the cation by its element name.

STEP 3
Name the anion by changing the last part of its element name to ide.

STEP 4
Write the name of the cation first and the name of the anion second.

Copyright © 2008 by Pearson Education, Inc.
Publishing as Benjamin Cummings
Some Ionic Compounds with Two Elements

<table>
<thead>
<tr>
<th>Formula</th>
<th>Ions</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>Na$^+$ Cl$^-$</td>
<td>sodium chloride</td>
</tr>
<tr>
<td>K$_2$S</td>
<td>K$^+$ S$^{2-}$</td>
<td>potassium sulfide</td>
</tr>
<tr>
<td>MgO</td>
<td>Mg$^{2+}$ O$^{2-}$</td>
<td>magnesium oxide</td>
</tr>
<tr>
<td>CaI$_2$</td>
<td>Ca$^{2+}$ I$^-$</td>
<td>calcium iodide</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>Al$^{3+}$ O$^{2-}$</td>
<td>aluminum oxide</td>
</tr>
</tbody>
</table>
More Ionic Compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>Metal Ion</th>
<th>Nonmetal Ion</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaF</td>
<td>Na⁺</td>
<td>F⁻</td>
<td>sodium fluoride</td>
</tr>
<tr>
<td>MgBr₂</td>
<td>Mg²⁺</td>
<td>Br⁻</td>
<td>magnesium bromide</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Al³⁺</td>
<td>O²⁻</td>
<td>aluminum oxide</td>
</tr>
</tbody>
</table>

Copyright © 2008 by Pearson Education, Inc. Publishing as Benjamin Cummings
Homework Assignment:

Name:________________________

Write the formulas and names for compounds of the following ions:

<table>
<thead>
<tr>
<th></th>
<th>N(^3\text{-})</th>
<th>Br(^-)</th>
<th>S(^2\text{-})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na(^+)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al(^3+)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 06 – Slide 48 of 96
Homework Assignment:

Name:__

Write the names of the following compounds:

1) CaO __________________
2) KBr __________________
3) Al₂O₃ __________________
4) MgCl₂ __________________
Most Transition Metals form Two or More Positive Ions

Most of the transition metals

• Form 2 or more positive ions.

For example,

• Copper forms Cu$^+$ and Cu$^{2+}$
• Iron forms Fe$^{2+}$ and Fe$^{3+}$
• Gold form Au$^+$ and Au$^{3+}$
Metals that form more than One Cation

Table 6.4 Some Metals That Form More Than One Positive Ion

<table>
<thead>
<tr>
<th>Element</th>
<th>Possible Ions</th>
<th>Name of Ion</th>
<th>Element</th>
<th>Possible Ions</th>
<th>Name of Ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium</td>
<td>Cr$^{2+}$</td>
<td>chromium(II)</td>
<td>Manganese</td>
<td>Mn$^{2+}$</td>
<td>manganese(II)</td>
</tr>
<tr>
<td></td>
<td>Cr$^{3+}$</td>
<td>chromium(III)</td>
<td></td>
<td>Mn$^{3+}$</td>
<td>manganese(III)</td>
</tr>
<tr>
<td>Cobalt</td>
<td>Co$^{2+}$</td>
<td>cobalt(II)</td>
<td>Mercury</td>
<td>Hg$_2$$^{2+}$</td>
<td>mercury(I)*</td>
</tr>
<tr>
<td></td>
<td>Co$^{3+}$</td>
<td>cobalt(III)</td>
<td></td>
<td>Hg$^{2+}$</td>
<td>mercury(II)</td>
</tr>
<tr>
<td>Copper</td>
<td>Cu$^+$</td>
<td>copper(I)</td>
<td>Nickel</td>
<td>Ni$^{2+}$</td>
<td>nickel(II)</td>
</tr>
<tr>
<td></td>
<td>Cu$^{2+}$</td>
<td>copper(II)</td>
<td></td>
<td>Ni$^{3+}$</td>
<td>nickel(III)</td>
</tr>
<tr>
<td>Gold</td>
<td>Au$^+$</td>
<td>gold(I)</td>
<td>Tin</td>
<td>Sn$^{2+}$</td>
<td>tin(II)</td>
</tr>
<tr>
<td></td>
<td>Au$^{3+}$</td>
<td>gold(III)</td>
<td></td>
<td>Sn$^{4+}$</td>
<td>tin(IV)</td>
</tr>
<tr>
<td>Iron</td>
<td>Fe$^{2+}$</td>
<td>iron(II)</td>
<td>Lead</td>
<td>Pb$^{2+}$</td>
<td>lead(II)</td>
</tr>
<tr>
<td></td>
<td>Fe$^{3+}$</td>
<td>iron(III)</td>
<td></td>
<td>Pb$^{4+}$</td>
<td>lead(IV)</td>
</tr>
</tbody>
</table>
Periodic Table and Some Ions

![Periodic Table Image](image-url)
Naming with Variable Charge Metals

Guide to Naming Ionic Compounds with Variable Charge Metals

STEP 1
Determine the charge of the cation from the anion.

STEP 2
Name the cation by its element name and a Roman numeral in parentheses for the charge.

STEP 3
Name the anion by changing the last part of its element name to ide.

STEP 4
Write the name of the cation first and the name of the anion second.
Naming Variable Charge Metals

Transition metals

- With two different ions use a **Roman numeral** after the name of the metal to indicate ionic charge.
- Only zinc, silver, and cadmium form one ion (Zn$^{2+}$, Ag$^+$, and Cd$^{2+}$)

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeCl$_2$</td>
<td>iron(II) chloride</td>
</tr>
<tr>
<td>FeCl$_3$</td>
<td>iron(III) chloride</td>
</tr>
<tr>
<td>Cu$_2$S</td>
<td>copper(I) sulfide</td>
</tr>
<tr>
<td>CuCl$_2$</td>
<td>copper(II) chloride</td>
</tr>
<tr>
<td>SnCl$_2$</td>
<td>tin(II) chloride</td>
</tr>
<tr>
<td>PbBr$_4$</td>
<td>lead(IV) bromide</td>
</tr>
</tbody>
</table>
Naming FeCl\textsubscript{2}

To name FeCl\textsubscript{2} [1 Iron ion + 2 chloride ions]

1. Determine the charge of the cation using the charge of the anion (Cl-).

 \[
 \text{Fe ion} + 2 \text{Cl}^- = 1(?) + 2(1-) = 0
 \]

 \[
 \text{Fe ion} = 2^+ \quad \text{Fe}^{2+}
 \]

2. Name the cation by the element name and a Roman numeral in parenthesis to show charge.

 \[
 \text{Fe}^{2+} = \text{iron(II)}
 \]

3. Write the name of the anion with an \textit{ide} ending.

 \[
 \text{iron(II) chloride} = \text{FeCl}_2
 \]
Naming Cr_2O_3

To name Cr_2O_3

1. Determine the charge of cation from the anion (O^{2-}).

\[2\text{Cr ions} + 3 \text{O}^{2-} = ? + 3(2-) = ? - 6 = 0 \]

\[? = +6 \quad +6 / 2\text{Cr ions} = +3 \]

\[\text{Cr ion} = 3+ \quad \text{Cr}^{3+} \]

2. Name the cation by the element name and use a Roman numeral in parenthesis to show its charge.

\[\text{Cr}^{3+} = \text{chromium(III)} \]

3. Write the name of the anion with -ide ending.

\[\text{chromium (III) oxide} = \text{Cr}_2\text{O}_3 \]

Chapter 06 – Slide 56 of 96
Learning Check

Select the correct name for each.

1. \(\text{Fe}_2\text{S}_3 \)
 A) iron sulfide
 B) iron(II) sulfide
 C) iron (III) sulfide

2. \(\text{CuO} \)
 A) copper oxide
 B) copper(I) oxide
 C) copper (II) oxide
Guide to Writing Formulas from the Name

Guide to Writing Formulas from the Name of an Ionic Compound

STEP 1
Identify the cation and anion.

STEP 2
Balance the charges.

STEP 3
Write the formula, cation first, using subscripts from charge balance.

Copyright © 2008 by Pearson Education, Inc.
Publishing as Benjamin Cummings
Writing Formulas

Write the formula of potassium sulfide.

STEP 1 Identify the cation and anion.
- potassium = K⁺
- sulfide = S²⁻

STEP 2 Balance the charges.
K⁺ S²⁻
K⁺
2(1+) + 2(1-) = 0

STEP 3 2 K⁺ and 1 S²⁻ = K₂S
Writing Formulas

Write the formula of cobalt(III) chloride.

STEP 1. Identify the cation and anion.

- cobalt (III) = Co3+ (III = charge of 3+)
- chloride = Cl−

STEP 2. Balance the charges.

\[
\begin{align*}
\text{Co}^{3+} & \quad \text{Cl}^{-} \\
\text{Cl}^{-} & = (3+) + 3(1-) = 0 \\
\text{Cl}^{-} &
\end{align*}
\]

STEP 3. 1 Co3+ and 3 Cl− = CoCl\textsubscript{3}
Learning Check

The correct formula for each of the following is:

1. Copper (I) nitride
 - A) CuN
 - B) CuN₃
 - C) Cu₃N

2. Lead (IV) oxide
 - A) PbO₂
 - B) PbO
 - C) Pb₂O₄
Polyatomic Ions

Window cleaner
NH$_4$OH

NH$_4^+$
Ammonium ion

OH$^-$
Hydroxide ion

Copyright © 2008 by Pearson Education, Inc.
Publishing as Benjamin Cummings
Polyatomic Ions

A polyatomic ion

- Is a group of atoms.
- Has an overall ionic charge.

Some examples of polyatomic ions are

- NH_4^+ ammonium
- OH^- hydroxide
- NO_3^- nitrate
- NO_2^- nitrite
- CO_3^{2-} carbonate
- PO_4^{3-} phosphate
- HCO_3^- hydrogen carbonate (bicarbonate)
Some Compounds with Polyatomic Ions

Plaster molding \(\text{CaSO}_4 \)

Fertilizer \(\text{NaNO}_3 \)

\(\text{Ca}^{2+} \) \(\text{SO}_4^{2-} \) Sulfate ion

\(\text{Na}^+ \) \(\text{NO}_3^- \) Nitrate ion

Copyright © 2008 by Pearson Education, Inc.
Publishing as Benjamin Cummings

Chapter 06 – Slide 64 of 96
More Names of Polyatomic Ions

The names of common polyatomic anions

• End in *ate*.
 \[\text{NO}_3^- \quad \text{nitr}ate \quad \text{PO}_4^{3-} \quad \text{phosph}ate \]

• With one oxygen less end in *ite*.
 \[\text{NO}_2^- \quad \text{nitri}te \quad \text{PO}_3^{3-} \quad \text{phosphi}te \]

• With hydrogen attached use prefix *hydrogen* (or *bi*).
 \[\text{HCO}_3^- \quad \text{hydrogen} \quad \text{carbonate} \quad \text{(bicarbonate)} \]
 \[\text{HSO}_3^- \quad \text{hydrogen} \quad \text{sulfite} \quad \text{(bisulfite)} \]

\[\text{SO}_4^{2-} \quad \text{sulfate} \quad \text{HSO}_4^- \quad \text{hydrogen sulfi}te \]
Names and Formulas of Common Polyatomic Ions

<table>
<thead>
<tr>
<th>Nonmetal</th>
<th>Formula of Ion</th>
<th>Name of Ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>OH(^-)</td>
<td>Hydroxide</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>NH(_4^+)</td>
<td>Ammonium</td>
</tr>
<tr>
<td></td>
<td>NO(_3^-)</td>
<td>Nitrate</td>
</tr>
<tr>
<td></td>
<td>NO(_2^-)</td>
<td>Nitrite</td>
</tr>
<tr>
<td>Chlorine</td>
<td>ClO(_4^-)</td>
<td>Perchlorate</td>
</tr>
<tr>
<td></td>
<td>ClO(_3^-)</td>
<td>Chlorate</td>
</tr>
<tr>
<td></td>
<td>ClO(_2^-)</td>
<td>Chlorite</td>
</tr>
<tr>
<td></td>
<td>ClO(^-)</td>
<td>Hypochlorite</td>
</tr>
<tr>
<td>Carbon</td>
<td>CO(_3^{2-})</td>
<td>Carbonate</td>
</tr>
<tr>
<td></td>
<td>HCO(_3^-)</td>
<td>Hydrogen carbonate (or bicarbonate)</td>
</tr>
<tr>
<td></td>
<td>CN(^-)</td>
<td>Cyanide</td>
</tr>
<tr>
<td></td>
<td>C(_2)H(_3)O(_2^-)(\text{CH}_3\text{COO}^-)</td>
<td>Acetate</td>
</tr>
<tr>
<td></td>
<td>SCN(^-)</td>
<td>Thiocyanate</td>
</tr>
</tbody>
</table>
Names and Formulas of Common Polyatomic Ions

<table>
<thead>
<tr>
<th>Nonmetal</th>
<th>Formula of Ion a</th>
<th>Name of Ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur</td>
<td>SO_4^{2-}</td>
<td>Sulfate</td>
</tr>
<tr>
<td></td>
<td>HSO$_4^-$</td>
<td>Hydrogen sulfate (or bisulfate)</td>
</tr>
<tr>
<td></td>
<td>SO_3^{2-}</td>
<td>Sulfite</td>
</tr>
<tr>
<td></td>
<td>HSO$_3^-$</td>
<td>Hydrogen sulfite (or bisulfite)</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>PO_4^{3-}</td>
<td>Phosphate</td>
</tr>
<tr>
<td></td>
<td>HPO$_4^{2-}$</td>
<td>Hydrogen phosphate</td>
</tr>
<tr>
<td></td>
<td>H_2PO_4^-</td>
<td>Dihydrogen phosphate</td>
</tr>
<tr>
<td></td>
<td>PO_3^{3-}</td>
<td>Phosphite</td>
</tr>
<tr>
<td>Chromium</td>
<td>CrO_4^{2-}</td>
<td>Chromate</td>
</tr>
<tr>
<td></td>
<td>$\text{Cr}_2\text{O}_7^{2-}$</td>
<td>Dichromate</td>
</tr>
<tr>
<td>Manganese</td>
<td>MnO_4^-</td>
<td>Permanganate</td>
</tr>
</tbody>
</table>

Copyright © 2008 by Pearson Education, Inc.
Publishing as Benjamin Cummings

Chapter 06 – Slide 67 of 96
Prefixes for Names of Polyatomic Ions of Halogens

Polyatomic ions of the halogens require prefixes.

\[
\begin{align*}
\text{ClO}_4^- & \quad \text{perchlorate} & \text{one oxygen more} \\
\text{ClO}_3^- & \quad \text{chlorate} & \text{most common form} \\
\text{ClO}_2^- & \quad \text{chlorite} & \text{one oxygen less} \\
\text{ClO}^- & \quad \text{hypochlorite} & \text{two oxygens less}
\end{align*}
\]
Naming Compounds with Polyatomic Ions

- The positive ion is named first followed by the name of the polyatomic ion.

\[\text{NaNO}_3 \] \hspace{1cm} \text{sodium nitrate}
\[\text{K}_2\text{SO}_4 \] \hspace{1cm} \text{potassium sulfate}
\[\text{Fe(}\text{HCO}_3\text{)}_3 \] \hspace{1cm} \text{iron(III) bicarbonate or}
\hspace{2cm} \text{iron(III) hydrogen carbonate}
\[(\text{NH}_4)_3\text{PO}_3 \] \hspace{1cm} \text{ammonium phosphite}
Some Compounds with Polyatomic Ions

<table>
<thead>
<tr>
<th>Formula</th>
<th>Name</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaSO₄</td>
<td>Barium sulfate</td>
<td>X-ray contrast medium</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>Calcium carbonate</td>
<td>Antacid, calcium supplement</td>
</tr>
<tr>
<td>Ca₃(PO₄)₂</td>
<td>Calcium phosphate</td>
<td>Calcium replenisher</td>
</tr>
<tr>
<td>CaSO₃</td>
<td>Calcium sulfite</td>
<td>Preservative in cider and fruit juices</td>
</tr>
<tr>
<td>CaSO₄</td>
<td>Calcium sulfate</td>
<td>Plaster casts</td>
</tr>
<tr>
<td>AgNO₃</td>
<td>Silver nitrate</td>
<td>Topical anti-infective</td>
</tr>
<tr>
<td>NaHCO₃</td>
<td>Sodium bicarbonate</td>
<td>Antacid</td>
</tr>
<tr>
<td>Zn₃(PO₄)₂</td>
<td>Zinc phosphate</td>
<td>Dental cements</td>
</tr>
<tr>
<td>FePO₄</td>
<td>Iron(III) phosphate</td>
<td>Food and bread enrichment</td>
</tr>
<tr>
<td>K₂CO₃</td>
<td>Potassium carbonate</td>
<td>Alkalizer, diuretic</td>
</tr>
<tr>
<td>Al₂(SO₄)₃</td>
<td>Aluminum sulfate</td>
<td>Antiperspirant, anti-infective</td>
</tr>
<tr>
<td>AIPO₄</td>
<td>Aluminum phosphate</td>
<td>Antacid</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>Magnesium sulfate</td>
<td>Cathartic, Epsom salts</td>
</tr>
</tbody>
</table>

Table 5.7 Some Compounds That Contain Polyatomic Ions

Copyright © 2008 by Pearson Education, Inc. Publishing as Benjamin Cummings
Learning Check

Select the correct formula for each:

1. aluminum nitrate
 A) AlNO₃ B) Al(NO)₃ C) Al(NO₃)₃

2. copper(II) nitrate
 A) CuNO₃ B) Cu(NO₃)₂ C) Cu₂(NO₃)₁
e

3. iron (III) hydroxide
 A) FeOH B) Fe₃OH C) Fe(OH)₃
e

4. tin(IV) hydroxide
 A) Sn(OH)₄ B) Sn(OH)₂ C) Sn₄(OH)
Learning Check

Match each formula with the correct name:

1. MgS A) magnesium sulfite
2. MgSO₃ B) magnesium sulfate
3. MgSO₄ C) magnesium sulfide
4. Ca(ClO₃)₂ D) calcium chlorate
5. Ca(ClO)₂ E) calcium chlorite
6. Ca(ClO₂)₂ F) calcium hypochlorite
Learning Check

Name each of the following compounds:

1. Mg(NO₃)₂ magnesium nitrate
2. Cu(ClO₃)₂ copper(II) chlorate
3. PbO₂ lead (IV) oxide
4. Fe₂(SO₄)₃ iron(III) sulfate
5. Ba₃(PO₃)₂ barium phosphite
Writing Formulas with Polyatomic Ions

The formula of an ionic compound

- Containing a polyatomic ion must have a charge balance that equals zero(0).

 \[
 \text{Na}^+ \quad \text{and} \quad \text{NO}_3^- \quad \rightarrow \quad \text{NaNO}_3
 \]

- With two or more polyatomic ions encloses the polyatomic ions in parentheses.

 \[
 \text{Mg}^{2+} \quad \text{and} \quad 2\text{NO}_3^- \quad \rightarrow \quad \text{Mg(NO}_3)_2
 \]

 subscript 2 for charge balance
Learning Check

Write the correct formula for each:

1. potassium bromate
 \[\text{KBrO}_3 \]

2. calcium carbonate
 \[\text{CaCO}_3 \]

3. sodium phosphate
 \[\text{Na}_3\text{PO}_4 \]

4. iron(III) oxide
 \[\text{Fe}_2\text{O}_3 \]

5. iron (II) nitrite
 \[\text{Fe(NO}_2)_2 \]
Naming Ionic Compounds

Review:

Table 5.8 **Rules for Naming Ionic Compounds**

<table>
<thead>
<tr>
<th>Type</th>
<th>Formula Feature</th>
<th>Naming Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ionic compound (two elements)</td>
<td>Symbol of metal followed by symbol of nonmetal; subscripts used for charge balance.</td>
<td>Use element name for metal; Roman numeral required if more than one positive ion is possible. For nonmetal use element name with ide ending.</td>
</tr>
<tr>
<td></td>
<td>Examples:</td>
<td>Examples:</td>
</tr>
<tr>
<td></td>
<td>Na₂O</td>
<td>Sodium oxide</td>
</tr>
<tr>
<td></td>
<td>Fe₂S₃</td>
<td>Iron(III) sulfide</td>
</tr>
<tr>
<td>Ionic compound (more than two elements)</td>
<td>Usually symbol of metal followed by a polyatomic ion composed of nonmetals; parentheses may enclose polyatomic ion for charge balance.</td>
<td>Use element name for metal, with Roman numeral if needed, followed by name of polyatomic ion.</td>
</tr>
<tr>
<td></td>
<td>Examples:</td>
<td>Examples:</td>
</tr>
<tr>
<td></td>
<td>Mg(NO₃)₂</td>
<td>Magnesium nitrate</td>
</tr>
<tr>
<td></td>
<td>CuSO₄</td>
<td>Copper(II) sulfate</td>
</tr>
<tr>
<td></td>
<td>(NH₄)₂CO₃</td>
<td>Ammonium carbonate</td>
</tr>
</tbody>
</table>

Copyright © 2008 by Pearson Education, Inc. Publishing as Benjamin Cummings
Flowchart for Naming Ionic Compounds

Q: Does the metal form one positive ion or more?
- One
 - Group 1A (1)–3A (13), Zn, Ag, or Cd
 - Use the name of the element or use "ammonium" for the NH₄⁺ ion.
- More
 - Metal in B Groups 3B–12B, Groups 4A (14) or 5A (15)
 - Use the name of the element and a Roman numeral in parentheses for the positive charge of the ion.

Q: Is the nonmetal ion formed from a single atom or a polyatomic ion with oxygen?
- Single ion
 - Monatomic ion such as Cl⁻, S²⁻
 - Use the root of the name of the element adding ide ending.
- Polyatomic ion such as CO₃²⁻ or SO₄²⁻
 - Polyatomic ion
 - Use the name of the polyatomic with an ate or ite ending.
Learning Check

Name the following compounds:

A. $\text{Ca}_3(\text{PO}_4)_2$ calcium phosphate
B. FeBr_3 iron(III) bromide
C. Al_2S_3 aluminum sulfide
D. $\text{Mn(NO}_2)_2$ manganese(II) nitrite
E. NaHCO_3 sodium hydrogen carbonate
Learning Check

Write the formulas for the following:

A. calcium nitrate \[\text{Ca}^{+2}(\text{NO}_3^{-}) \quad \text{Ca}_2(\text{NO}_3)_2 \]

B. iron(II) hydroxide \[\text{Fe}^{+2}(\text{OH}) \quad \text{Fe}_2(\text{OH})_2 \]

C. aluminum carbonate \[\text{Al}^{+3} \text{CO}_3^- \quad \text{Al}_2(\text{CO}_3)_3 \]

D. copper(II) hypobromite \[\text{Cu}^{+2}(\text{BrO}) \quad \text{Cu}(\text{BrO})_2 \]

E. lithium phosphate \[\text{Li}^+ (\text{PO}_4^3-) \quad \text{Li}_3(\text{PO}_4) \]
Covalent Compounds and Their Names

Copyright © 2008 by Pearson Education, Inc.
Publishing as Benjamin Cummings
Forming a \(\text{H}_2 \) Molecule

Energy

Distance between nuclei decreases

\(\text{H}^+ \) Far apart; no attractions

\(\text{H}^+ \) Attraction pull atoms closer

\(\text{H}_2 \) molecule
H₂, A Covalent Molecule

In a hydrogen (H₂) molecule

- Two hydrogen atoms share electrons to form a covalent single bond.
- Each H atom acquires two (2) electrons.
- Each H becomes stable like helium (He).

\[\text{H\textbullet{} + \bullet{}H} \rightarrow \text{H:}\text{H} \rightarrow \text{H}\text{―\text{H}} = \text{H}_2 \]

Electrons to share A shared pair of electrons A covalent bond A hydrogen molecule

© 2008 by Pearson Education, Inc. Publishing as Benjamin Cummings
Diatomic Elements

- These elements share electrons to form **diatomic, covalent molecules**.

Table 6.9 Elements That Exist as Diatomic, Covalent Molecules

<table>
<thead>
<tr>
<th>Element</th>
<th>Diatomic Molecule</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H₂</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>N</td>
<td>N₂</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>O</td>
<td>O₂</td>
<td>Oxygen</td>
</tr>
<tr>
<td>F</td>
<td>F₂</td>
<td>Fluorine</td>
</tr>
<tr>
<td>Cl</td>
<td>Cl₂</td>
<td>Chlorine</td>
</tr>
<tr>
<td>Br</td>
<td>Br₂</td>
<td>Bromine</td>
</tr>
<tr>
<td>I</td>
<td>I₂</td>
<td>Iodine</td>
</tr>
</tbody>
</table>

Copyright © 2008 by Pearson Education, Inc. Publishing as Benjamin Cummings
Electron-Dot Formulas

Electron-dot formulas show

- The order of bonded atoms in a covalent compound.
- The bonding pairs of electrons between atoms.
- The unshared (lone) valence electrons if they exist.
- A central atom with an octet.
Electron-Dot Formulas and Models of Some Covalent Compounds

Table 5.10 Electron-Dot Formulas for Some Covalent Compounds

<table>
<thead>
<tr>
<th></th>
<th>CH₄</th>
<th>NH₃</th>
<th>H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using Electron Dots Only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>H</td>
<td>:O:</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Using Bonds and Electron Dots</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>H</td>
<td>:O:</td>
</tr>
<tr>
<td></td>
<td>H—ːC—ːH</td>
<td>H—ːN—ːH</td>
<td>:ːOːH</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Molecular Models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methane molecule</td>
<td></td>
<td>Ammonia molecule</td>
<td></td>
</tr>
</tbody>
</table>
Names of Covalent Compounds

Prefixes are used

- In the names of covalent compounds.
- Because typically two nonmetals can form two or more different compounds.

Examples of compounds of N and O:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>nitrogen oxide</td>
</tr>
<tr>
<td>NO₂</td>
<td>nitrogen dioxide</td>
</tr>
<tr>
<td>N₂O</td>
<td>dinitrogen oxide</td>
</tr>
<tr>
<td>N₂O₄</td>
<td>dinitrogen tetroxide</td>
</tr>
<tr>
<td>N₂O₅</td>
<td>dinitrogen pentoxide</td>
</tr>
</tbody>
</table>
Naming Covalent Compounds

STEP 1 Name the first nonmetal as the element.

STEP 2 End the name of the second nonmetal with *-ide*

STEP 3 Use *prefixes* to show the number of atoms (subscripts).

Mono is usually omitted.

Table 6.11 Prefixes Used in Naming Covalent Compounds

<table>
<thead>
<tr>
<th>Number of Atoms</th>
<th>Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mono</td>
</tr>
<tr>
<td>2</td>
<td>Di</td>
</tr>
<tr>
<td>3</td>
<td>Tri</td>
</tr>
<tr>
<td>4</td>
<td>Tetra</td>
</tr>
<tr>
<td>5</td>
<td>Penta</td>
</tr>
<tr>
<td>6</td>
<td>Hexa</td>
</tr>
<tr>
<td>7</td>
<td>Hepta</td>
</tr>
<tr>
<td>8</td>
<td>Octa</td>
</tr>
<tr>
<td>9</td>
<td>Nona</td>
</tr>
<tr>
<td>10</td>
<td>Deca</td>
</tr>
</tbody>
</table>

Copyright © 2008 by Pearson Education, Inc. Publishing as Benjamin Cummings
Naming Covalent Compounds

What is the name of SO$_3$?

STEP 1 The first nonmetal is S sulfur.

STEP 2 The second nonmetal is O named oxide.

STEP 3 The subscript 3 of O is shown as the prefix *tri*.

SO$_3$ \(\rightarrow\) sulfur trioxide

The subscript 1(for S) or *mono* is understood.
Naming Covalent Compounds

Name P_4S_3

STEP 1 The first nonmetal P is phosphorus.

STEP 2 The second nonmetal S is sulfide.

STEP 3 The subscript 4 of P is shown as *tetra*.

The subscript 3 of O is shown as *tri*.

$P_4S_3 \rightarrow$ tetraphosphorus trisulfide
Formulas and Names of Some Covalent Compounds

Table 6.12: Some Common Covalent Compounds

<table>
<thead>
<tr>
<th>Formula</th>
<th>Name</th>
<th>Commercial Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS₂</td>
<td>carbon disulfide</td>
<td>Manufacture of rayon</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
<td>Carbonation of beverages, fire extinguishers, propellant in aerosols, dry ice</td>
</tr>
<tr>
<td>SiO₂</td>
<td>silicon dioxide</td>
<td>Manufacture of glass, computer parts</td>
</tr>
<tr>
<td>NCl₃</td>
<td>nitrogen trichloride</td>
<td>Bleaching of flour in some countries (prohibited in U.S.)</td>
</tr>
<tr>
<td>SO₂</td>
<td>sulfur dioxide</td>
<td>Preserving fruits, vegetables; disinfectant in breweries; bleaching textiles</td>
</tr>
<tr>
<td>SO₃</td>
<td>sulfur trioxide</td>
<td>Manufacture of explosives</td>
</tr>
<tr>
<td>SF₆</td>
<td>sulfur hexafluoride</td>
<td>Electrical circuits (insulation)</td>
</tr>
<tr>
<td>ClO₂</td>
<td>chlorine dioxide</td>
<td>Bleaching pulp (for making paper), flour, leather</td>
</tr>
<tr>
<td>ClF₃</td>
<td>chlorine trifluoride</td>
<td>Rocket propellant</td>
</tr>
</tbody>
</table>

Copyright © 2008 by Pearson Education, Inc. Publishing as Benjamin Cummings
Learning Check

Select the correct name for each compound.

A. SiCl_4
 1) silicon chloride
 2) tetrasilicon chloride
 3) silicon tetrachloride

B. P_2O_5
 1) phosphorus oxide
 2) phosphorus pentoxide
 3) diphosphorus pentoxide

C. Cl_2O_7
 1) dichlorine heptoxide
 2) dichlorine oxide
 3) chlorine heptoxide
Learning Check

Write the name of each covalent compound:

CO carbon monoxide
CO₂ carbon dioxide
PCl₃ phosphorus trichloride
CCl₄ carbon tetrachloride
N₂O dinitrogen oxide
Guide to Writing Formulas

STEP 1 Write the symbols in the order of the elements in the name.

STEP 2 Write any prefixes as subscripts.

Example: Write the formula for carbon disulfide.

STEP 1 Elements are C and S

STEP 2 No prefix for carbon means 1 C

Prefix di = 2

Formula: CS_2
Learning Check

Write the correct formula for each of the following:

A. phosphorus pentachloride

B. dinitrogen trioxide

C. sulfur hexafluoride
Learning Check

Identify each compound as ionic or covalent and give its correct name.

1. SO_3 covalent - sulfur trioxide
2. MnCl_2 ionic - manganese(II) chloride
3. $(\text{NH}_4)_3\text{PO}_3$ ionic - ammonium phosphite
4. Cu_2CO_3 ionic – copper(I) carbonate
5. N_2O_4 covalent – dinitrogen tetroxide
Learning Check

Identify each compound as ionic or covalent and give its correct name.

1. \(\text{Ca}_3(\text{PO}_4)_2 \) ionic – calcium phosphate
2. \(\text{FeBr}_3 \) ionic – iron(III) bromide
3. \(\text{SCl}_2 \) covalent – sulfur dichloride
4. \(\text{Cl}_2\text{O} \) covalent – dichlorine oxide