How could this have been avoided?

Today

- General sampling issues
- Quantitative sampling
 - Random
 - Non-random
- Qualitative sampling

In Other Words

- How many subjects are enough?
- Does it really matter how you choose research subjects?
- What difference does it make?
General Sampling Issues

- A study’s sample is one of the most important design elements.
- Failure to obtain a good sample can severely limit results & even lead to incorrect results
- Sample differences represent a common source of invariance between similar studies in education research

General Sampling Issues

- Issues
 - Nature of the sample
 - Size of the sample
 - Method of selecting the sample

General Sampling Issues

Terminology

- **Population** - all members of a specified group
 - Target population – the population to which the researcher ideally wants to generalize
 - Accessible population – the population to which the researcher has access
- **Sample** - a subset of a population
- **Subject** - a specific individual participating in a study
- **Sampling technique** - the specific method used to select a sample from a population
Quantitative Sampling

Terminology (cont.)

- **Representation** – the extent to which the sample is representative of the population
 - Demographic characteristics
 - Personal characteristics
 - Specific traits
 - Goal is for the sample’s characteristics to match those of the target population as closely as possible.
 - High representation = Higher confidence in results.

- **Generalization** – the extent to which the results of the study can be reasonably extended from the sample to the population
 - Generalization is directly related to representation

Quantitative Sampling

Sampling Error (unintentional & unavoidable)

- The chance occurrence that a randomly selected sample is not representative of the population due to errors inherent in the sampling technique
 - Difference between the characteristics of the sample and the characteristics of the population
 - Random nature of errors
 - Controlled by selecting large samples
 - Census sample the only way to eliminate sampling error

Quantitative Sampling

Sampling Bias (intentional?)

- Some aspect of the researcher’s sampling design creates bias in the data
 - Did the researcher take care to sample all subgroups within the target population?
 - Non-random nature of errors
 - Controlled by being aware of sources of sampling bias and avoiding them
 - Example) Presidential Approval Ratings will likely be inaccurate if based only on opinions from members of the opposing party.
Quantitative Sampling

Designing a Sample

- Three fundamental steps
 - Identify a population
 - Define the sample size
 - Select the sample

Identify a Population

- The population is the group you want to generalize your research findings to
- Populations don’t always have to be the general population
- Try and have a sense size and complexity of the population before designing a sample
 - This may not always be possible

Define the Sample Size

- General rules for sample size
 - As many subjects as possible
 - Upper limit subject to many factors, such as budget, access, and time.
 - Thirty (30) subjects per group for correlational, causal-comparative, and true experimental designs
 - Driven by statistical analysis
 - Ten (10) to twenty (20) percent of the population for descriptive designs
As a population size increases, samples constitute a smaller percentage of a population.

Selecting Random Samples

- Known as probability sampling
- Best method to achieve a representative sample
- Four techniques
 - Random
 - Stratified random
 - Cluster
 - Systematic

<p>| Table 4.2 Sample Sizes (N) Required for Given Population Sizes (N) |
|---|---|---|---|---|---|---|---|</p>
<table>
<thead>
<tr>
<th>N</th>
<th>S</th>
<th>H</th>
<th>S</th>
<th>N</th>
<th>S</th>
<th>H</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>100</td>
<td>60</td>
<td>280</td>
<td>182</td>
<td>800</td>
<td>200</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>110</td>
<td>85</td>
<td>290</td>
<td>195</td>
<td>950</td>
<td>200</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>120</td>
<td>92</td>
<td>300</td>
<td>206</td>
<td>1000</td>
<td>200</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>130</td>
<td>97</td>
<td>320</td>
<td>178</td>
<td>1100</td>
<td>200</td>
</tr>
</tbody>
</table>

Random sampling
- Selecting subjects so that all members of a population have an equal and independent chance of being selected
- Advantages
 - High probability of achieving a representative sample
 - Meets assumptions of many statistical procedures
- Disadvantages
 - Identification of all members of the population can be difficult
 - Example: How would you know how many teachers there are in Nevada?
 - Contacting all members of the sample can be difficult
Selecting Random Samples

- Random sampling (continued)
 - Selection issues
 - Use a table of random numbers
 - Need to list all members of the population
 - Assign consecutive numbers to all members
 - Ignore duplicates and number out of range when sampled
 - Use of SPSS
 - Data, select cases, random sample, approximate or exact
 - Need for an electronic SPSS data set

Example – Simple Random Sample

- Research Question
 - Do elementary school teachers support the recess policy?
- Population Size = 100 teachers
- Desired Sample Size = 80 teachers
- Use random number table to select subjects from the population

Example – Simple Random Sample

- Using Table of Random Numbers
 - Number each teacher in the population from 000 to 100.
 - All numbers must have the same number of digits
 - Consult the table to select subjects for the survey.
Subjects 070, 015, & 040 are the first three selected. The last three digits fall between 000 & 100.

Selecting Random Samples

- Stratified random sampling
 - Selecting subjects so that relevant subgroups in the population (i.e., strata) are guaranteed representation
 - Proportional and non-proportional
 - Proportional – same proportion of subgroups
 - Non-proportional – different, often equal, proportions of subgroups
 - Advantage – representation of subgroups in the sample

- Disadvantages
 - Identification of all members of the population can be difficult
 - Identifying members of all subgroups can be difficult
 - Selection issues
 - Identification of relevant strata
 - Often identified by theory & previous research
 - Coding subjects regarding strata
 - Selecting randomly from within each level of the strata
Selecting Random Samples

- Cluster sampling
 - Selecting subjects by using groups that have similar characteristics and in which subjects can be found
 - School districts
 - Schools
 - Classrooms

- Advantages
 - Addresses some limitations of random sampling and stratified random sampling
 - Very useful when populations are large and spread over a large geographic region
 - Convenient and expedient

Selecting Random Samples

- Cluster sampling (continued)
 - Disadvantages
 - Representation is likely to become an issue
 - Assumptions of some statistical procedures can be violated

- Selection issues
 - Identify logical clusters and the average number of population members per cluster
 - Determine the number of clusters needed
 - \# Clusters = Desired Sample Size \div Average Size of Cluster
 - Randomly select necessary clusters
 - Multi-stage sampling

Selecting Random Samples

- Systematic sampling
 - Selecting every \(K \)th subject from a list of the members of the population
 - Advantage – very easily done
 - Disadvantages
 - Susceptible to systematic inclusion of some subgroups
 - Some members of the population don’t have an equal chance of being included
Selecting Random Samples

- **Systematic sampling (continued)**
 - Selection issues
 - Listing all members of the population can be difficult
 - Determining the value of K
 - $K = \frac{\text{Size of Population}}{\text{Desired Sample Size}}$
 - Starting at the top of the list again if the desired sample size is not reached

Selecting Non-Random Samples

- Known as non-probability sampling
- Use of methods that do not have random sampling at any stage
 - A source of sampling bias in educational research
- Useful when the population cannot be described
- Three techniques
 - Convenience
 - Purposive
 - Quota

Selecting Non-Random Samples

- **Convenience sampling**
 - Selection based on the availability of subjects
 - Volunteers (Ex, Psych. 100 Students)
 - Pre-existing groups
 - Concerns related to representation and generalizability
 - i.e., results only apply to those who are willing to volunteer as research subjects
Selecting Non-Random Samples

- Purposive sampling
 - Selection based on the researcher’s experience and knowledge of the group being sampled
 - Need for clear criteria for describing and defending the sample
 - Concerns related to representation and generalizability
 - What if the researcher’s knowledge about the population is inaccurate?

- Quota sampling
 - Selection based on the exact characteristics and quotas of subjects in the sample when it is impossible to list all members of the population
 - Concerns with accessibility, representation, and generalizability
 - Ex: Phone survey samples are limited to those who have telephones, listed phone numbers, and a willingness to answer questions. These subjects may not accurately reflect the general population

Quantitative Sampling:

Real World Example

- General Research Question
 - How much time do school psychologists spend administering standardized tests?

- Important issue from existing research
 - Doctoral vs. non-doctoral school psychologists

- Population = School Psychologists
 - Defined as the membership registry of the National Association of School Psychologists
 - What are some potential limitations of this?

- Sampling Strategy?
 - Stratified random sample with proportional allocation.
 - Stata = Doctoral S.P. & Non-doctoral S.P

- How many subjects?
 - 500 sampled, 365 responded to survey
 - Was this a sufficient sample size?

- What are the limits to Generalization?
Qualitative Sampling

- Unique characteristics of qualitative research
 - In-depth inquiry
 - Immersion in the setting
 - Importance of context
 - Appreciation of participant’s perspectives
 - Description of a single setting
 - The need for alternative sampling strategies

Qualitative Sampling

- Purposive techniques – relying on the experience and insight of the researcher to select participants
 - Intensity – compare differences of two or more levels of the topics
 - Students with extremely positive and extremely negative attitudes
 - Effective and ineffective teachers

Qualitative Sampling

- Purposive techniques (continued)
 - Homogeneous – small groups of participants who fit a narrow homogeneous topic
 - Criterion – all participants who meet a defined criteria
 - Snowball – initial participants lead to other participants
Qualitative Sampling

- Purposive techniques (continued)
 - Random purposive – given a pool of participants, random selection of a small sample
 - Inherent concerns related to generalizability and representation