1. Let E and F be two events of a sample space, S, with $P(F) > 0$. The event E, is independent of the event F, if and only if $P(E|F) = P(E)$

2. If two events have positive probabilities ($P(E) > 0$ and $P(F) > 0$), and if the event E is independent of F, then F is also independent of E. So, we say that E and F are independent events.

3. Criterion for independent events:
 (a) $P(E \cap F) = P(E) \cdot P(F)$

4. Independence for more than two events, simply apply the criterion over and over which gives:

 $P(E_1 \cap E_2 \cap E_3 \cap \ldots \cap E_n) = P(E_1) \cdot P(E_2) \cdot P(E_3) \ldots \cdot P(E_n)$

5. Example: Given $P(E) = 0.3, P(F) = 0.2, P(E \cup F) = 0.4$. Are E and F independent?
 Solution: First find $P(E \cap F)$ by using $P(E \cup F) = P(E) + P(F) - P(E \cap F)$ to get $P(E \cap F) = 0.1$
 Now apply number (3) to see if
 $P(E \cap F) \overset{?}{=} P(E) \cdot P(F)$
 $0.1 \overset{?}{=} 0.3 \cdot 0.2$
 $0.1 \neq 0.06$
 Since, $P(E \cap F) \neq P(E) \cdot P(F)$, then E and F are not independent.