A. Combinations

1. Combination: An arrangement of r objects chosen from n objects \textit{without regard to order}.

 (a) The symbol for combination of r objects chosen from n objects is $C(n, r)$ where $r \leq n$

 (b) Combination of n objects taken r at a time $= C(n, r) = \frac{n!}{(n-r)!r!}$ \textbf{REMEMBER: ORDER IS NOT IMPORTANT}

 (c) The above formula is also equivalent to $C(n, r) = \frac{P(n,r)}{r!}$

2. Permutation involving n objects that are not all different: The number of permutations of n objects, of which n_1 are of one kind, n_2 are of a second kind, \ldots, and n_k are of a kth kind is given by

 \[
 \frac{n!}{n_1!n_2!n_3! \ldots n_k!}
 \]

 where $n_1 + n_2 + \cdots + n_k = n$

B. Examples:

1. Evaluate: $C(6, 2) = \frac{6!}{(6-2)!2!} = \frac{6!}{4!2!} = \frac{6 \cdot 5 \cdot 4!}{4! \cdot 2!} = 15$

2. In how many ways can you deal a hand of 13 cards from a deck of 52 cards? $C(52, 13) = \frac{52!}{(52-13)!13!} = \frac{52!}{39!13!} = 635,013,559,600$

3. In how many ways can 3 people be chosen from 12 applicants? $C(12, 3) = \frac{12!}{(12-3)!3!} = \frac{12!}{9!3!} = \frac{12 \cdot 11 \cdot 10 \cdot 9!}{3 \cdot 2 \cdot 1 \cdot 9!} = 220$

4. How many distinct “words” can be made using all the letters in the eight letter word BASEBALL? $\frac{8!}{2!2!2!} = 5040$