2.5 Combinations of Multisets

Let S be a multiset. An r-combination of S is

(an unordered selection of r elements from S)

Example: Find the 3-combinations of $S = \{2 \cdot a, 1 \cdot b, 3 \cdot c\}$

Example: How many 3-combinations of $S = \{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$ are there?
THEOREM Let S be a multiset with objects of

, each with

Then the number of

is

PROOF Let $S = \{ \}$. An r-combination of S has the form

\{ \}, where each

and

Thus the number of

equals the number of

We show that the number of such

that is, we establish a

First, suppose that

is a particular solution with

Then define the $(r + k - 1)$-permutation

where, of course, if

, then there are no 1’s between the

Notice that there are 1’s and ’s and so we have an

On the other hand, let us begin with an

then define

to be the number

define

to be the number

and for each $i = 2, 3, \ldots, k - 1$, define

to be the number

In this way,

will be nonnegative integers with

So we have our desired one-to-one correspondence and so the number of

is the number of

which is
Example: Bakery sells eight varieties of bagels. If a box of bagels contains one dozen, how many different options are there for a box of bagels? (assume unlimited supply of each type of bagel)

Example: Same bakery as previous example, but what if we insist that there is at least one of each type of bagel? (How many different options are there for a box of bagels?)

Example: How many integral solutions of the equation in which ?