11.7 More on Trees
We will cover several algorithms for finding a spanning tree in a connected graph.

Algorithm to grow a spanning tree
Let G be a graph of order n and let v be a vertex of G.
(1) Put V and E.
(2) While there exists a vertex v' in V and a vertex v'' not in V such that (v', v'') is an edge of G.
 (i) Put the vertex v' in V.
 (ii) Put the edge (v', v'') in E.
(3) Put V.

THEOREM Let G be a graph. Then G is connected if and only if the graph constructed by carrying out the algorithm of G is a spanning tree of G.

Proof

Breadth-first algorithm $bf(x)$ denotes the
Let G be a graph of order n and let v be a vertex of G.
(1) Put V and E.
(2) If there is no edge in E that joins a vertex in V to a vertex not in V, then stop.
 Otherwise, find an edge with a vertex in V and a vertex not in V such that has smallest breadth-first number, and do the following
 (i) Put V.
 (ii) Put E.
 (iii) Put the vertex into V.
 (iv) Put the edge into E.
 (v) Put V.
 (vi) Increase by 1 and go back to (2).

The keeps track of the order that the vertex is chosen and put into V.
THEOREM (BF-algorithm) Let be a graph and let be a vertex of . Then is connected if and only if the graph constructed by carrying out the BF-algorithm is a of . If is connected, then, for each vertex of , the in between and equals , and this is the same as the between and in .
Depth-first algorithm \(df(x) \) denotes the

Let \(G \) be a graph of order \(n \) and let \(v \) be a vertex of \(G \).

(1) Put

(2) If there is no edge in \(G \) that joins a vertex in \(G \) to a vertex not in \(G \), then stop.

Otherwise, find an edge \(uv \) with \(u \) in \(G \) and \(v \) not in \(G \) such that \(v \) has largest depth-first number, and do the following

(i) Put

(ii) Put the vertex \(v \) into

(iii) Put the edge \(uv \) into

(iv) Put

(v) Increase \(d_f(v) \) by 1 and go back to (2)

THEOREM (DF-algorithm) Let \(G \) be a graph and let \(v \) be a vertex of \(G \).

Then \(v \) is in a spanning tree of \(G \) if and only if the graph constructed by carrying out the DF-algorithm is a spanning tree of \(G \).