11.4 Bipartite multigraphs

A multigraph \(G \) is \(\text{if its vertex set can be partitioned into two subsets } X \text{ and } Y \) such that each edge of \(G \) joins

The pair \(X, Y \) is called a \(\text{of } G. \)

Example

Example

Special class of graphs:

Recall: The \(d(x, y) \) between two vertices and \(x \) and \(y \) is the

THEOREM A multigraph is \(\text{if and only if each of its cycles has} \)

Proof
11.5 Trees

Example

Recall: An edge is a \text{\underline{\hspace{1cm}}} if its removal leaves the graph disconnected.

THEOREM A connected graph of order \(n \) has at least \(\text{\underline{\hspace{1cm}}} \) edges. Moreover, for each positive integer \(n \), there exist connected graphs with exactly \(\text{\underline{\hspace{1cm}}} \) edges. Removing any edge from a connected graph of order \(n \) with exactly \(\text{\underline{\hspace{1cm}}} \) edges leaves a and hence each edge is a

A \(\text{\underline{\hspace{1cm}}} \) is defined to be a \(\text{\underline{\hspace{1cm}}} \) in which \(\text{\underline{\hspace{1cm}}} \) is a

THEOREM Let \(\text{\underline{\hspace{1cm}}} \) be a connected graph of order \(\text{\underline{\hspace{1cm}}} \). Then \(\text{\underline{\hspace{1cm}}} \) is a \(\text{\underline{\hspace{1cm}}} \) if and only if \(\text{\underline{\hspace{1cm}}} \) has edges.

Proof
LEMMA Let G be a connected graph and let f be an edge of G. Then G is a tree if and only if f contains f.

Proof

THEOREM Let G be a connected graph. Then G is a tree if and only if G has no cycles.

Proof

THEOREM A graph G is a tree if and only if for every pair of distinct vertices u and v, there is a unique path joining u and v, which necessarily has length equal to the distance between u and v.

Proof
Let G be a graph. A \text{ of } G is a

An edge incident with a \text{ is a }

Examples

THEOREM Let G be a \ldots of order \ldots Then \ldots has at least two

Proof

Example

A tree that is a spanning subgraph of G is a \ldots of G.

Example How can we find a spanning tree for a connected graph G?

THEOREM Every connected graph