8.5 Power Series

RECALL geometric series \(\sum_{n=1}^{\infty} ar^{n-1} = \)

NOW A power series has the form

\[\sum_{n=0}^{\infty} c_n x^n \]

EXAMPLE \(c_n = 1 \) for every \(n = 0, 1, 2, 3, \ldots \)

\[\sum_{n=0}^{\infty} c_n x^n \]

\[\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \text{ for } |x| < 1 \text{ (that is, } -1 < x < 1) \]

AND

\[\sum_{n=0}^{\infty} x^n \text{ diverges for } |x| \geq 1 \text{ (that is, } x \geq 1 \text{ or } x \leq -1). \]

Power series centered at \(a: \) \[\sum_{n=0}^{\infty} c_n (x - a)^n \]

GOAL Find all values \(x \) so that the power series is convergent.

Interval of convergence \((a - R, a + R) \) or \[a - R, a + R \text{ or } (,] \text{ or } [,) \]

Radius of convergence \(R \)

Possibilities:

1. \(R = 0 \)
2. \(R = \infty \)
3. There is a positive real number \(R \) such that the series converges if \(|x - a| < R \) and diverges if \(|x - a| > R \). (what happens at \(|x - a| = R \) must be analyzed as special cases)
EXAMPLES Find the radius of convergence and interval of convergence for each series.

1. \[\sum_{n=0}^{\infty} \frac{(x - 2)^n}{\sqrt{n+1}} \]

2. \[\sum_{n=0}^{\infty} \frac{(x - 1)^n}{n!} \]
3. \[\sum_{n=0}^{\infty} \frac{(x - 12)^n}{2^n} \]

4. \[\sum_{n=0}^{\infty} \frac{2^n (x - 3)^n}{n + 3} \]

5. \[\sum_{n=1}^{\infty} \frac{(-1)^n (x + 2)^n}{n2^n} \]