Let \(f(x) \geq 0 \) for \(x \) in \([a, b]\).

Let \(R \) denote the region above the \(x \)-axis and below the graph of \(f(x) \) on the interval \([a, b]\).

Rotate the region \(R \) about the \(x \)-axis.

GOAL: Find the volume of the resulting solid.

EXAMPLE Find the volume of the solid obtained by rotating the region bounded by the curves \(y = 1 - x^2 \) and \(y = 0 \) about the \(x \)-axis.
EXAMPLES Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified line.

1. \[y = \frac{1}{4}x^2, \ y = 5 - x^2; \] about the \(x \)-axis

2. \[y = \frac{1}{x}, \ y = 0, \ x = 1, \ x = 3; \] about \(y = -1 \)
Another perspective:

EXAMPLES Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified line.

1. \(y = \ln x, \ y = 1, \ y = 2, \ x = 0; \) about the \(y \)-axis

2. \(y = x, \ y = \sqrt{x}; \) about \(x = 2 \)
General version of volume definition: \[V = \]

EXAMPLE Find the volume of the solid whose base is an elliptical region with boundary curve \[\frac{x^2}{16} + \frac{y^2}{25} = 1 \] and whose cross-sections that are perpendicular to the \(x \)-axis are isosceles right triangles with hypotenuse in the base.