6.2 Trigonometric Integrals and Substitutions (part 1)

Trigonometric integrals like this: \[\int \sin^m x \cos^n x \, dx \]

If \(m \) is an odd positive integer, let \(u = \)

If \(n \) is an odd positive integer, let \(u = \)

If both \(m \) and \(n \) are even nonnegative integers, then use the identities:

\[
\begin{align*}
\cos^2 x &= \\
\sin^2 x &=
\end{align*}
\]

An identity that is often used in each of these cases is: \(\sin^2 x + \cos^2 x = 1 \)

EXAMPLES

1. \[\int \frac{\cos^3 x}{\sqrt{\sin x}} \, dx \]

2. \[\int \sin^2 x \, dx \]
3. \[\int_{0}^{\pi/2} \cos^2 3x \, dx \]

4. \[\int \sin^2 x \cos^2 x \, dx \]
Trigonometric integrals like this: \[\int \tan^m x \sec^n x \, dx \]

If \(m \) is an odd positive integer, then normally let \(u = \)

If \(n \) is an even positive integer, then normally let \(u = \)

If \(m \) is an even positive integer and \(n \) is an odd positive integer, then a formula and/or integration by parts should be used.

In any case, the identity \(1 + \tan^2 x = \sec^2 x \) is frequently used.

EXAMPLES

1. \[\int \tan^3 x \sec^6 x \, dx \]

2. \[\int \tan x \sec^6 x \, dx \]

Integrals of the type \[\int \cot^m x \csc^n x \, dx \] are handled in the same manner as \[\int \tan^m x \sec^n x \, dx \].

The important identity here is \(1 + \cot^2 x = \csc^2 x \).