5.2 The definite integral

Let \(f(x) \) be defined on \([a, b]\). (Not necessary that \(f(x) \geq 0 \))

Divide \([a, b]\) into \(n \) equal length subintervals. (Each of length \(\Delta x = \frac{b-a}{n} \))

Choose \(x_i^* \) in the \(i \)th subinterval \([x_{i-1}, x_i]\).
(Usually we choose \(x_i^* \) to be the right endpoint.)
(Midpoint Rule is when \(x_i^* \) is chosen to be the midpoint of the \(i \)th subinterval.)

Compute the Riemann Sum \(\sum_{i=1}^{n} f(x_i^*) \Delta x \)

Define \(L = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x \) to be the integral of \(f(x) \) on \([a, b]\).

If the limit exists, we say \(f \) is integrable.

NOTATION: \(\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x \)

\(\int_{a}^{b} f(x) dx \) is called the definite integral of \(f(x) \) on \([a, b]\).

\(a \) and \(b \) are called the lower and upper limits of integration.

THEOREM If \(f \) is continuous, then the limit exists and so \(f \) is integrable.

EXAMPLE Express \(\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{1 + (x_i^*)^2} \Delta x \) as an integral on the interval \([0, 1]\).

Define

1. \(\int_{a}^{a} f(x) dx = \)

2. If \(a < b \), then \(\int_{b}^{a} f(x) dx = \)
EXAMPLE
Find $\int_{1}^{2} x^2 \, dx$ by the limit definition.

Properties

1. $\int_{a}^{b} cf(x) \, dx = c \int_{a}^{b} f(x) \, dx$

2. $\int_{a}^{b} (f(x) + g(x)) \, dx = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx$

3. $\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx$ for $a < c < b$

4. $\int_{a}^{b} c \, dx = c(b - a)$

EXAMPLES

1. Given $\int_{-1}^{3} x^3 \, dx = 20$, find $\int_{-1}^{3} (x^3 - 2) \, dx$

2. Use area to find $\int_{0}^{6} (5 - x) \, dx$