5-4. Three applications

Let G be a graph that is connected in S. The degree of G relative to this set is the number of edges with vertices being the endpoints and where two vertices are adjacent if the corresponding edges share a vertex in their neighborhood.

EXAMPLES

Recall: A graph is planar if it can be drawn in the plane with no edges crossing whereas a graph that is not planar is a nonplanar graph.

Let G be a graph in S. Notation:

LEMMA If G is a nontrivial graph with n vertices then

THEOREM
LEMMA If G is a connected graph with minimum degree $\delta(G)$ then

(i)
(ii)

Proof

A is a collection of at least
fit together in so that

(i)
(ii)

EXAMPLES

A is a convex such that

(i)
(ii)

THEOREM

Proof Let G be a

Then

(1)
(2)
We consider THEOREM (Pick’s Theorem)