3.5 Inverse trigonometric functions

RECALL: \(y = \sin^{-1} x \) means that \(y \) is the angle between \(-\frac{\pi}{2} \) and \(\frac{\pi}{2} \) with \(\sin y = x \)

Note: \(\sin^{-1} x = \arcsin x \)

FACTS: \(\sin(\sin^{-1} x) = x \) for all \(x \) in the interval \([-1, 1] \)
\(\sin^{-1}(\sin x) = x \) for all \(x \) in the interval \(\left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \)

EXAMPLE Find the exact value of \(\sin^{-1}(-1/2) \).

RECALL: \(y = \cos^{-1} x \) means that \(y \) is the angle between 0 and \(\pi \) with \(\cos y = x \)

FACTS: \(\cos(\cos^{-1} x) = x \) for all \(x \) in the interval \([-1, 1] \)
\(\cos^{-1}(\cos x) = x \) for all \(x \) in the interval \([0, \pi] \)

EXAMPLE Simplify the expression \(\tan(\cos^{-1} x) \)

RECALL: \(y = \tan^{-1} x \) means that \(y \) is the angle between \(-\frac{\pi}{2} \) and \(\frac{\pi}{2} \) with \(\tan y = x \)

EXAMPLE Find the exact value of \(\tan^{-1}(\tan(\frac{4\pi}{3})) \)
DERIVATIVES of Inverse Trig Functions

RECALL: \(y = \sin^{-1} x \) means that \(\sin y = x \) and \(-\frac{\pi}{2} \leq y \leq \frac{\pi}{2} \)

\[
\frac{d}{dx} \sin^{-1} x = \quad \frac{d}{dx} \cos^{-1} x = \\
\frac{d}{dx} \tan^{-1} x = \quad \frac{d}{dx} \cot^{-1} x = \\
\frac{d}{dx} \sec^{-1} x = \quad \frac{d}{dx} \csc^{-1} x =
\]

EXAMPLES Differentiate each function and simplify where possible.

1. \(y = (\sin^{-1} x)^2 \)

2. \(y = \tan^{-1}(x - \sqrt{1 + x^2}) \)

3. \(y = x \cos^{-1} x - \sqrt{1 - x^2} \)
4. \(f(x) = x \ln(\arctan x) \)

5. \(h(t) = e^{\sec^{-1} t} \)

EXAMPLE Find the limit \(\lim_{x \to 0^+} \tan^{-1}(\ln x) \)

EXAMPLE Find \(y' \) if \(\tan^{-1}(xy) = 1 + x^2y \)