3-1. Definitions

Let \(A \) be a finite set.

A \(\text{of} \ A \) is a \(\text{and} \) function

The set \(\) is called an \(\text{(often \(\text{)\})} \)
We say the \(\) acts on the set

A \(\text{is a} \) together with an operation \(\text{(often multiplication) such that} \)

(i) \(\text{(associative)} \)
(ii) \(\text{(identity)} \)
(iii) \(\text{(inverses)} \)
(iv) \(\text{(closure)} \)

A \(\text{is a} \) whose elements are all

acting on the same (finite) object set.

We say the \(\) acts on the object set

Terminology:

EXAMPLES

For \(\) and \(\) we define \(\text{if and only if} \) for some

Then \(\) is an \(\text{and partitions} \) into equivalence classes, called the \(\text{of} \), under the \(\text{of} \)

EXAMPLE
For , the of is
The collection of these form the of

If there is only in the of on , then is

If and if is on , then is a permutation group.

EXAMPLES

Two permutation groups and are () if there is a such that

Two permutation groups and (acting on object sets and , respectively) are () if

(i)

(ii)
Let be a

An of is an of with itself.

The set of all forms a acting on the object set . This is called the of and is denoted by

EXAMPLE

THEOREM