4.1 Exponential functions

An exponential function has the form \(y = a^x \) where \(a \neq 0 \) and \(a \neq 1 \).

Recall:

If \(x = n \) is a positive integer, then \(a^x = \)

If \(x = 0 \), then \(a^0 = \)

If \(x = -n \), where \(n \) is a positive integer, then \(a^x = \)

If \(x = \frac{p}{q} \) is rational (\(p \) and \(q \) are integers, \(q > 0 \)), then \(a^x = \)

Now: What if \(x \) is irrational? (\(x \) is a real number, but not rational)

\(2^x = ? \)

EXAMPLES Graph the function.

1. \(f(x) = 2^x \)

2. \(g(x) = \left(\frac{1}{2} \right)^x \)

Graphs of any exponential function:
EXAMPLES Use transformations to graph each of the following functions.

1. \(f(x) = 2^{x+5} \)

2. \(g(x) = 3^{-x} - 1 \)

3. \(h(x) = -\left(\frac{1}{2}\right)^x + 4 \)

EXAMPLE A certain breed of mouse was introduced onto a small island with an initial population of 320 mice, and scientists estimate that the mouse population is doubling every year.

(a) Find a function that models the number of mice after \(t \) years.

(b) Estimate the mouse population after 8 years.

Compound interest: \(A(t) = P\left(1+\frac{r}{n}\right)^{nt} \)

- \(A(t) \) is amount after \(t \) years
- \(P \) is principal
- \(r \) is interest rate per year
- \(n \) is number of times interest is compounded per year
- \(t \) is number of years

EXAMPLE If $1000 is invested at an interest of 1.25% per year, compounded quarterly, find the value of the investment after the given number of years.

(a) 1 year (b) 2 years (c) 10 years