1.5 Continuity

Continuous function – “can draw the entire graph without having to lift your pencil off the paper”

Examples of discontinuous functions:

Continuity at a point $x = a$: A function f is **continuous at** $x = a$ if

(i)

(ii)

and (iii)

If f is continuous at every point in an interval (a, b), then f is **continuous on** (a, b).

A function f is **continuous from the right** if

(i)

(ii)

and (iii)

A function f is **continuous from the left** if

(i)

(ii)

and (iii)

EXAMPLES

1. Is $f(x) = \begin{cases} x^2 & x \leq 2 \\ x + 2 & x > 2 \end{cases}$ continuous at $x = 2$?

2. Is $g(x) = \begin{cases} 3x^2 + 2 & x < 1 \\ x - 4 & x \geq 1 \end{cases}$ continuous at $x = 1$?
FACT If f is continuous on (a, b) and $\lim_{x \to a^+} f(x) = f(a)$ and $\lim_{x \to b^-} f(x) = f(b)$, then f is continuous on $[a, b]$.

THEOREM If f and g are continuous at a, then so are $f + g$, $f - g$, fg, $\frac{f}{g}$ ($g(a) \neq 0$).

Continuous functions (continuous on their domains)
 polynomials, rational, trig, inverse trig, exponential, logarithms

THEOREM If g is continuous at a and f is continuous at $g(a)$, then $(f \circ g)$ is continuous at a.

EXAMPLES Where (on what intervals) are the following functions continuous?
1. $f(x) = \frac{x^2 - 4}{x + 2}$
2. $g(x) = 2^{3x} \cos x$

EXAMPLE Find $\lim_{x \to 4} \frac{5 + \sqrt{x}}{\sqrt{5 + x}}$

Intermediate Value Theorem Let f be continuous on $[a, b]$. Suppose that $f(a) \neq f(b)$. If N is any number between $f(a)$ and $f(b)$, then there exists a number c between a and b such that $f(c) = N$.

EXAMPLE Consider $f(x) = x^2 - 2x$ on $[1, 5]$. Illustrate the Intermediate Value Theorem.