THE SIGNIFICANCE TEST FOR \(r \) IS DERIVED FROM THE TEST STATISTIC \(t \)

The textbook Box 16.4 showed that testing a hypothesis about \(r \) is another application of the Equation (9.1) general formula for the test statistic: test statistic = (sample statistic - population parameter)/(standard error of the sample statistic).

The population parameter (specified by the null hypothesis) is \(\rho \), the population correlation coefficient; the sample statistic that point-estimates \(\rho \) is \(r \); and the denominator of the test statistic must therefore be \(s_r \), the standard error of the correlation coefficient.

The **standard error of \(r \)** can be defined analogously to the standard error of the mean \(s_\bar{X} \). Suppose we take a sample of size \(n \), measure each subject on variables \(X \) and \(Y \), and compute \(r \) for those data. Then we take another sample of size \(n \) and again compute \(r \), and another sample (and another \(r \)), and so on, indefinitely often. The standard deviation of the resulting distribution of all the \(r \) values is \(s_r \), the standard error of \(r \). If the null hypothesis is true, then it can be shown that

\[
s_r = \sqrt{\frac{1 - r^2}{n - 2}}
\]

(16.7)

For our height and weight data, \(s_r = \sqrt{(1 - .634^2)/(10 - 2)} = \sqrt{.075} = .274 \).

The test statistic can be shown to be \(t \), so following the Equation (9.1) model, \(t = (r - \rho)/s_r \), but because \(\rho = 0 \) by the null hypothesis, the test statistic becomes simply, as we saw,

\[
t = \frac{r}{s_r} \quad [df = n - 2]
\]

(16.4)

We can sketch the distribution of the sample statistic \(r \) and the test statistic \(t \) as shown in Figure 1. The distribution on the upper axis shows the values we might expect \(r \) to take if we computed the correlation coefficients of a long series of independent samples of size ten drawn from a population in which the null hypothesis \(\rho = 0 \) is true. The lower axis shows \(t \) as defined by Equation (16.4).

Choosing a .05 level of significance, we find from the textbook’s Table A.2 that the critical value of \(t \) with \(df = 10 - 2 = 8 \) is \(t_{.05; 8} \) (two-tailed) = 2.306. The critical value of \(r \) is then \(r_{cv} = \rho \pm t_{cv}(s_r) = 0 \pm 2.306(.274) = \pm .632 \). We show these values on the appropriate axes in Figure 1 and shade the rejection regions that lie beyond them.
We show the observed value of the statistic $r_{\text{obs}} = .634$ on the upper axis of Figure 1, and we compute $t_{\text{obs}} = r_{\text{obs}} / s_r = .634 / .274 = 2.314$ and show it on the lower axis. Because the observed values exceed the critical values (just barely!), we reject H_0, just as when using Table A.8.

Note that if you try this process with a different correlation coefficient, you may arrive at a different critical value r_{cv}. For example, if r_{obs} had been .4, s_r would have been $\sqrt{(1 - .4^2) / (10 - 2)} = .324$, so the critical values would have been $\pm 2.306(.324) = \pm .747$ instead of $\pm .632$. The larger the r_{obs}, the smaller the s_r. As r_{obs} moves closer and closer to r_{cv}, r_{cv} moves closer and closer to r_{obs}, with the result that the hypothesis test based on t will reject H_0 in exactly those instances where the test based on Table A.8 rejects H_0.

EXERCISE

(Answers below)

1. Use the t test procedure described here to determine the smallest positive correlation coefficient that would be significantly different from 0 (non-directional test) in these cases. [Hint: Use an iterative method: Make a guess of r and see whether it is significant; use the results of the first guess to generate a second (better) guess of r; and continue until you have a guess of r that is just barely significant (accurate to within .01).]

(a) $n = 10$ and $\alpha = .05$
(b) $n = 30$ and $\alpha = .05$
(c) $n = 120$ and $\alpha = .05$
(d) $n = 30$ and $\alpha = .01$
(e) Compare your answers with the critical values of Pearson’s r in Table A.8. Could Table A.8 have been generated using the procedure of this problem?
Answers

1. (a) $df = 8; t_{cv} = 2.306; r = .64$
 (b) $df = 28; t_{cv} = 2.048; r = .37$
 (c) $df = 118; t_{cv} = 1.98; r = .18$
 (d) $df = 28; t_{cv} = 2.763; r = .47$
 (e) Yes