Review #1: Briefly define "Population":

Review #2: Briefly define "Sample":

Page 1
Lectlet 2A Page 2

Review #1: Briefly define "Population." Answer:
Yours
Mine

Review #2: Briefly define "Sample." Answer:
Yours
Mine

Review #3: The following probabilities refer to events that occur how often?

0 1 .05
Review #3: The following probabilities refer to events that occur how often? Answer

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yours</td>
<td></td>
<td></td>
<td>Yours</td>
</tr>
<tr>
<td>Mine</td>
<td></td>
<td></td>
<td>Mine</td>
</tr>
</tbody>
</table>

New material:
Variable: Something that can take several or many possible values
Constant: Something that has one fixed value
Variable: Something that can take several or many possible values
Constant: Something that has one fixed value

<table>
<thead>
<tr>
<th>Level</th>
<th>Categorizes?</th>
<th>Inherent order?</th>
<th>Equal unit of measurement?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Ordinal</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Interval/Ratio</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

Examples:
Nominal: Type of ice cream
Ordinal: Shirt size
Interval/Ratio: Distance

An example that shows why the distinction between levels of measurement is important:
Chocolate = 1 (my preference)
Vanilla = 2
Strawberry = 3 (your preference)
Our average preference is \((1 + 3)/2 = 2\) or Vanilla, which is absurd!
Lectlet 2A Page 5

Usually we’ll symbolize a variable as X; X with a subscript i, that is, X_i, is the ith value of X.

Consider these data:

<table>
<thead>
<tr>
<th>i</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

For example, when i is 2, X_i is X_2, which is the second value of X, which is 3. Thus $X_2 = 3$.

Similarly, $X_3 = 5$.
Lectlet 2A Page 6

Consider these data:

\[\begin{array}{c|c}
 i & X \\
 1 & 4 \\
 2 & 3 \\
 3 & 5 \\
\end{array} \]

The Greek upper case letter sigma \(\Sigma \) means "the sum of"

Thus the sum of all the values of \(X \) is \(\Sigma X = 4 + 3 + 5 = 12 \)

The most complicated sum we will see in this course:

\[
 r = \frac{\sum XY - \frac{\sum X \sum Y}{n}}{\sqrt{\left(\sum X^2 - \frac{(\sum X)^2}{n} \right) \left(\sum Y^2 - \frac{(\sum Y)^2}{n} \right)}}
\]

You may wish to explore Personal Trainer's Algebra if you have not done so already.

End of lectlet.