Types of Magnetic Surveys

- **Airborne**
 - Good for large areas

- **Shipborne**
 - Good for placed with water (e.g. the ocean)

- **Ground based**
 - On foot or by vehicle
 - Higher resolution than airborne because person can stop walking

- **2D vs 1D survey**
 - Due to ease of measurement easier to cover areas
Sources of Noise

- Induced fields from ferromagnetic items
 - Pocket knives, magnetite earrings, belt buckle
 - Houses, wire fences, rebar in concrete, cars
- AC power sources
 - Utility lines & transformers
Dealing with Temporal Variations

- Base station looping procedure
 - Figuring out a good reoccupation interval would be hard
 - Brief spikes would be easily missed
- Two instrument method
 - Yields complete record of field variation during survey
 - Lack of drift issues for magnetometers makes this strategy feasible
Correcting for spatial variation

- Only corrections for the main field are done
 - Main field is well known

- Other possible corrections
 - Elevation too small to be important
 - Topography, regional anomalies too poorly constrained to correct for
Correcting for Main Field Variations

- Find latitude and longitude of point of interest
- Enter date of survey
- Choose magnetic model (we will use IGRF)
- Plug into on-line calculator (https://www.ngdc.noaa.gov/geomag-web/#igrfwmm)
- Obtain value for main field strength
Correcting for Main Field Variations

- For areas small compared to main field variation
 - Use linear interpolation from corners
 - Interpolate values for survey line endpoints from corners
 - Interpolate values along line from end points
Magnetic Anomalies

- Shape of signal depends on
 - Distribution of susceptibility in subsurface
 - Shape of anomalous body
 - Orientation relative to cardinal directions (N,S,E,W)
 - Orientation of main field at survey location
Magnetic Anomalies at the Magnetic North Pole

- How is the field oriented at the north pole?

Main field
Magnetic Anomalies at the Magnetic North Pole

- What will the induced field look like?
What will the total field look like?

Some places the total field will have a smaller strength and others a larger strength.
Magnetic Anomalies at the North Magnetic Pole

- Remove main field from survey
- Over high susceptibility body
 - Central positive anomaly
 - Small negative anomalies to side
Magnetic Anomalies at the Magnetic Equator

- How is the field oriented at the equator?

Diagram showing the main field.
Magnetic Anomalies at the Magnetic Equator

- What will the induced field look like?
Magnetic Anomalies at the Magnetic Equator

- What will the total field look like?

Some places the total field will have a smaller strength and others a larger strength.
Magnetic Anomalies at the North Magnetic Pole

- Remove main field from survey
- Over high susceptibility body
 - Central negative anomaly
 - Small positive anomalies to side
Magnetic Anomalies in the Northern Hemisphere

- On one side induced field subtracts and on the other it adds
- Anomaly has both a positive and negative portion
- Anomaly is not symmetric about object

Fe = Earth’s Main Magnetic Field
Fa = Induced Anomalous Magnetic Field
Magnetics Observations (Part I)

- Download 2daysmag.dat
- Perform linear interpolation for base station measurements from 2 hrs to 10 min
 - use simpler procedure to save time
- Plot residuals vs time
- Calculate RMS error for each reoccupation interval
- Plot RMS error as a function of reoccupation interval
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Time (hour Magnetic Field (nT))</td>
<td>2 hr</td>
<td>residual</td>
<td>1 hr</td>
<td>residual</td>
<td>2 hr</td>
<td>residual</td>
<td>1 hr</td>
<td>residual</td>
<td>2 hr</td>
<td>residual</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.016667</td>
<td>51350</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.033333</td>
<td>51349</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.066667</td>
<td>51349</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.093333</td>
<td>51349</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.1</td>
<td>51349</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.116667</td>
<td>51350</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.133333</td>
<td>51350</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.15</td>
<td>51350</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.166667</td>
<td>51350</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.2</td>
<td>51349.5</td>
<td>0.571428</td>
<td>51349.5</td>
<td>0.5</td>
<td>51349.5</td>
<td>0.5</td>
<td>51349.5</td>
<td>0.5</td>
<td>51349.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.216667</td>
<td>51349</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.233333</td>
<td>51349.5</td>
<td>-0.57143</td>
<td>51349.5</td>
<td>-0.5</td>
<td>51349.5</td>
<td>-0.5</td>
<td>51349.5</td>
<td>-0.5</td>
<td>51349.5</td>
<td>-0.5</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.25</td>
<td>51350</td>
<td>-1</td>
<td>51350.5</td>
<td>-1</td>
<td>51350.5</td>
<td>-1</td>
<td>51350.5</td>
<td>-1</td>
<td>51350.5</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.266667</td>
<td>51350</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.283333</td>
<td>51350</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.3</td>
<td>51350</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.316667</td>
<td>51350</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.333333</td>
<td>51350</td>
<td></td>
</tr>
</tbody>
</table>

The table above lists the time in hours and the magnetic field in nT for both 2-hour and 1-hour residuals.