1. Future value of a lump sum
 \[FV_t = PV \left(1 + i\right)^t \]

2. Present value of a lump sum
 \[PV = \frac{FV_t}{(1 + i)^t} \]

3. Future value of an annuity
 \[FV = \text{PMT} \left(\frac{(1 + i)^t - 1}{i}\right) \]

4. Present value of an annuity
 \[PV = \frac{\text{PMT} \left[1 - \frac{1}{(1 + i)^t}\right]}{i} \]

5. Present value of a perpetuity
 \[PV = \frac{\text{PMT}}{i} \]

6. Effective annual rate
 \[\text{EAR} = \left[1 + \frac{\text{APR}}{m}\right]^m - 1 \]

7. CAPM:
 \[\hat{r}_i = \hat{r}_m + \beta_i (\hat{r}_m - \hat{r}_f) \]
 \[\text{note: } \hat{r}_m = \text{return on the market, } \hat{r}_f = \text{risk-free rate} \]

8. Zero Growth Model:
 \[P_0 = \frac{D}{r_s} \]

9. Constant Growth Model:
 \[P_0 = \frac{D_t}{r_s - g} \]

10. Variable Growth Model:
 \[P_0 = \sum \left(\frac{D_t}{(1 + r_s)^t}\right) \]

11. Growth rate
 \[g = \text{RR} \times \text{ROE} \]
 \[\text{note: } g = \text{growth rate, } \text{RR} = \text{retention rate} \]

12. Cost of Preferred Stock
 \[r_p = \frac{D_p}{V_p (1 - f_p)} \]

13. Cost of Retained Earnings \(r_s \)
 (A) CAPM approach
 \[r_s = \hat{r}_m + \beta_s (\hat{r}_m - \hat{r}_f) \]
 \[\text{note: } \hat{r}_m = \text{return on the market, } \hat{r}_f = \text{risk-free rate} \]

 (B) Discounted Cash Flow Method (DCF)
 \[r_s = \left(\frac{D}{P_0}\right) + g \]

 (C) Bond Yield Plus Risk Premium Approach
 \[r_s = r_d + \text{risk premium} \]
 \[\text{note: } r_d = \text{cost of debt} \]

14. Cost of Newly Issued Common Stock
 \[r_n = \frac{D}{P_0 (1 - f_p)} + g \]

15. WACC \(_1\)
 \[= w_d r_d (1-t) + w_p r_p + w_s r_s \]
 \[\text{note: } w_d = \% \text{ debt, } w_p = \% \text{ preferred stock, } w_s = \% \text{ common stock} \]

16. WACC \(_2\)
 \[= w_d r_d (1-t) + w_p r_p + w_s r_s \]

17. Breakpoint = \(\text{RE} / (\% \text{ cs in capital structure}) \)
 \[\text{note: } \text{RE} = \text{retained earnings} \]

18. Net Present Value (NPV) = PV(CFs) - Initial Investment

19. Profitability Index (PI) =
 \[\frac{\text{PV of cash inflows}}{\text{PV of cash outflows}} \]