1. Graph the line: \(y = -4x \)

2. Graph the line: \(y = -x - 4 \)

3. Graph the line: \(y = 2x - 7 \)

4. Graph the line: \(y = -\frac{3}{4}x + 2 \)

5. Graph the line: \(y = \frac{1}{3}x - 6 \)

6. Graph the line: \(y - 3x = -4 \)

7. Graph the line: \(x - y = 4 \)

8. Graph the line: \(y = -6 \)

9. Graph the line: \(x = 5 \)

10. Find the \(x \)-intercept and \(y \)-intercept of the line. Write your answers as ordered pairs.
11. Find the x-intercept and y-intercept of the line. Write your answers as ordered pairs.

12. Find the x-intercept and y-intercept of the line. Write your answers as ordered pairs.

$-x + 2y = 6$

13. Find the x-intercept and y-intercept of the line. Write your answers as ordered pairs.

$2x - 3y = -12$

14. Find the slope of the line.
15. Find the slope of the line.

16. Find the slope of the line passing through the points \((-2, 4)\) and \((-5, 1)\)

17. Find the slope of the line passing through the points \((-4, 7)\) and \((2, -8)\)

18. Graph the line with slope \(-1\) passing through the point \((5, 5)\)

19. Graph the line with slope \(\frac{1}{2}\) passing through the point \((-2, -5)\)

20. Find the slope and \(y\)-intercept of the line
\[y = \frac{5}{4} - \frac{1}{2}x \]

21. Find the slope and \(y\)-intercept of the line
\[3x + 8y = 4 \]

22. Find the slope and \(y\)-intercept of the line
\[7x - y = -3 \]

23. Graph the line: \(12x + 3y = -3\)

24. Graph the line: \(4x - 5y = -5\)

25. Write an equation in slope-intercept form for the line with \(y\) -intercept 9 and slope \(3\)

26. Write an equation in slope-intercept form for the line with \(y\) -intercept 2 and slope \(-\frac{1}{2}\)

27. Write an equation in slope-intercept form for the line a slope of \(\frac{3}{2}\) that passes through the point \((4, 1)\).

28. Write an equation in slope-intercept form for the line a slope of \(-\frac{2}{3}\) that passes through the point \((9, -2)\).
29. Write the equation of the line below in slope-intercept form.

![Graph of a line](image)

30. Write the equation of the line below in slope-intercept form.

![Graph of a line](image)

31. Write an equation in slope-intercept form for the line that passes through the points $(-5, -2)$ and $(1, 1)$.

32. Write an equation in slope-intercept form for the line that passes through the points $(6, -4)$ and $(-6, -1)$.

33. Write the equation for the vertical line through the point $(-8, 0)$.

34. Write the equation for the horizontal line through the point $(-2, 9)$.

35. Graph the line: $y + 3 = -\frac{1}{2}(x - 3)$

36. Graph the line: $y + 4 = -2(x + 2)$

37. A line passes through the point $(-6, -3)$ and has a slope of $\frac{-5}{2}$. Write an equation in point-slope form for this line.
38. A line passes through the point (9, −8) and has a slope of \(\frac{2}{3} \). Write an equation in point-slope form for this line.

39. Consider the line \(y = \frac{5}{2}x - 2 \)

 (a) What is the slope of a line perpendicular to this line?
 (b) What is the slope of a line parallel to this line?

40. Consider the line \(-2x - 4y = -3\)

 (a) What is the slope of a line perpendicular to this line?
 (b) What is the slope of a line parallel to this line?

41. Consider the line \(y = -6x + 1 \)

 (a) Find the equation of the line that is parallel to this line and passes through the point (8, 6)
 (b) Find the equation of the line that is perpendicular to this line and passes through the point (8, 6)

42. A construction crew is lengthening a road. The road started with a length of 56 miles, and the crew is adding 4 miles to the road each day. Let \(L \) represent the total length of the road (in miles), and let \(D \) represent the number of days the crew has worked. Write an equation relating \(L \) to \(D \).

43. Rachel is putting money into a savings account. She starts with $650 in the savings account, and each week she adds $30. What is the total amount of money in the savings account after 13 weeks?

44. A construction crew is lengthening a road. Let \(y \) represent the total length of the road in miles. Let \(x \) represent the number of days the crew has worked. Suppose \(x \) and \(y \) are related by the equation \(y = 2x + 51 \)

 (a) What was the road’s length when the crew started working?
 (b) What is the change per day in the road’s length?