Phosphate Handling

A Handling of Phosphate Along the Nephron

- Classical distal tubule
- 10% reabsorbed
- 90% remaining

B Proximal Tubule

- Tubule lumen
- Interstitial space
- Na Pi (Type II)
- Na Pi (Type II)

For individuals on a low-P diet, P excretion is minimal.

Phosphate filtered, excreted, or reabsorbed (mmole/min)

Physiological range of "filterable" plasma [phosphate]

Filtered

Excreted

Reabsorbed

Plasma phosphate concentration (mM)
Calcium Handling

A. HANDLING OF Ca\(^{2+}\) ALONG NEPHRON

1. PCT
 - 100% reabsorbed
 - 55% remaining
 - 45% reabsorbed

2. DCT
 - 25% remaining
 - 25% reabsorbed
 - 75% remaining
 - 0.5% of filtered load remaining

3. PST
 - 15% remaining
 - 15% reabsorbed

B. PROXIMAL TUBULE

Interstitial space
Tubule lumen
H\(_2\)O
Solute
Diffusion
\(\text{Ca}^{2+}\)
\(\text{Ca}^{2+}\)
\(\text{Na}^{+}\)

PTH: parathyroid hormone; PTHrP: parathyroid hormone-related protein.
Calcium Handling

C THICK ASCENDING LIMB (TAL)

D DISTAL CONVOLUTED TUBULE (DCT)

The Ca^{2+}-sensing receptor lowers levels of cAMP, which otherwise stimulates Na/K/Cl cotransporter.

<table>
<thead>
<tr>
<th>FACTORS AFFECTING Ca^{2+} REABSORPTION ALONG THE NEPHRON</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Proximal tubule</td>
</tr>
<tr>
<td>Thick ascending limb</td>
</tr>
<tr>
<td>Distal convoluted tubule</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Collecting duct</td>
</tr>
</tbody>
</table>

AVP, arginine vasopressin; PTH, parathyroid hormone.
Magnesium Handling

FACTORS AFFECTING Mg\(^{2+}\) REABSORPTION ALONG THE NEPHRON

<table>
<thead>
<tr>
<th>SITE</th>
<th>INCREASE REABSORPTION</th>
<th>DECREASE REABSORPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximal tubule</td>
<td>Volume contraction</td>
<td>Volume expansion</td>
</tr>
<tr>
<td>Thick ascending limb</td>
<td>PTH, calcitonin, glucagon, AVP</td>
<td>Furosemide and related loop diuretics</td>
</tr>
<tr>
<td>Distal convoluted tubule and collecting tubules/ducts</td>
<td>Low plasma [Mg(^{2+})], Metabolic alkaliuria</td>
<td>Mannitol, High plasma [Mg(^{2+})] or [Ca(^{2+})]</td>
</tr>
<tr>
<td></td>
<td>PTH, calcitonin, glucagon, AVP, aldosterone, PGE(_2), Low plasma [Mg(^{2+})], Amiloride</td>
<td>High plasma [Mg(^{2+})] or [Ca(^{2+})], Metabolic acidosis, K(^+) or phosphate depletion</td>
</tr>
</tbody>
</table>

AVP, arginine vasopressin; PTH, parathyroid hormone.
Physiological Role of Potassium Ions

A. Roles of Intracellular K^+

<table>
<thead>
<tr>
<th>Function</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell-voltage Maintenance</td>
<td>Net loss of K^+ → Cell shrinkage</td>
</tr>
<tr>
<td></td>
<td>Net gain of K^+ → Cell swelling</td>
</tr>
<tr>
<td>Intracellular pH Regulation</td>
<td>Net loss of K^+ → Cell acidosis</td>
</tr>
<tr>
<td></td>
<td>Net gain of K^+ → Cell alkalosis</td>
</tr>
<tr>
<td>Cell Enzyme Functions</td>
<td>K^+ dependence of enzymes: e.g., some ATPases, succinic dehydrogenase</td>
</tr>
<tr>
<td>DNA/Protein Synthesis, Growth</td>
<td>Lack of K^+ → reduction of protein synthesis, stunted growth</td>
</tr>
</tbody>
</table>

B. Roles of Transmembrane $[K^+]_r$ Ratio

- **Resting Cell Membrane Potential**
 - Reduced $[K^+]_r/[K^+]_o$ → membrane depolarization
 - Increased $[K^+]_r/[K^+]_o$ → membrane hyperpolarization
- **Neuromuscular Activity**
 - Low plasma K^+: muscle weakness, muscle paralysis, intestinal distention, peripheral vasodilation, respiratory failure
 - High plasma K^+: increased muscle excitability; later, muscle weakness (paralytic)
- **Cardiac Activity**
 - Low plasma K^+: slowed conduction of pacemaker activity, arrhythmias
 - High plasma K^+: conduction disturbances, ventricular arrhythmias and ventricular fibrillation
- **Vascular Resistance**
 - Low plasma K^+: vasoconstriction
 - High plasma K^+: vasodilatation

ATP, adenosine triphosphate.

Potassium Flux

- GI intake 100 mmole/day
- Gut 90 mmole/day
- Feces 10 mmole/day
- Reabsorbed 770 mmole/day
- Secreted 50 mmole/day
- Kidneys Filtered 810 mmole/day
- ECF 65 mmole
 - [K] = 4.5 mM
- Muscle 2600 mmoles
- Liver 250 mmoles
- Bone 300 mmoles
- RBC 250 mmoles

5
The handling of an acute K+ load is first accomplished by cellular loading, then by renal excretion.

When dietary K+ is very low:
- The PCT reabsorbs 80% of filtered K+
- The Loop of Henle reabsorbs 10% of filtered K+
- The DCT reabsorbs up to 2% of filtered K+
- The IMCD reabsorbs up to 6% of the filtered K+ load.
When dietary K^+ is very high:

- The PCT reabsorbs 80% of filtered K^+
- The Loop of Henle reabsorbs 10% of filtered K^+
- The DCT can secrete up to 180% of filtered K^+
- The IMCD reabsorbs up to 20-40% of the filtered K^+ load.

Juxtamedullary nephron handling of K^+ when dietary K^+ is very high:

- The tDLH can secrete up to 100% filtered K^+
- This secreted K^+ (and more) is reabsorbed by the tALH, the TALH, and the medullar collecting ducts
- The net effect is the trapping of K^+ in the medullar interstitium.
- The DCT can raise fluid [K+] to 200 mosm or higher, and the elevated medullary interstitial [K+] lowers the K^+ diffusion gradient across the collecting duct epithelium, which minimizes passive K^+ reabsorption at this site and maximizes K^+ excretion.
Cellular K^+ transport along the nephron.

Reabsorption (all paracellular)

Reabsorption (½ paracellular and ½ transcellular)

Reabsorption (all transcellular)

Active transcellular excretion

Hypokalemic alkalosis

Luminal flow increases K^+ secretion.

This is because of the high apical K^+ permeability of the principle cells of the CCD.
Aldosterone induces K^+ secretion by the cortical collecting duct.

Stimulates Na-K pumps on basolateral membrane of principle cells.

Increases area of basolateral membrane and number of Na-K pumps.

Stimulates apical Na channels, which depolarizes the apical membrane and increases the driving force for K^+ diffusion from the cell to lumen.

Increases K^+ conductance of the apical membrane.
Acidosis decreases K⁺ secretion.

Affects are largely on principle cells:

Decreased pH inhibits Na-K pumping and thus K⁺ secretion. Decreased pH reduced conductance of apical K⁺ channels.
Renal pH Regulation

Rids body of phosphate, urate, lactate, ketone bodies. Also reabsorsbs, synthesizes or excretes HCO_3^-.

$$CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow HCO_3^- + H^+$$

Losing a HCO_3^- is the same as gaining a H^+.

Generating or reabsorbing a HCO_3^- is the same as losing a H^+.

Hence to reabsorb HCO_3^-, H^+ has to be secreted. Alternatively, HCO_3^- secretion requires that H^+ be retained.

Reabsorption of filtered HCO_3^- is coupled to H^+ secretion. Alternatively, HCO_3^- excretion is coupled to H^+ retention.
Regeneration of HCO_3^-

Buffering of excreted H^+ by HPO_4^{2-}

Glutamine metabolism and NH_4^+ secretion