Suppositional Reasoning Examples

1. Suppose that Darwin’s theory of evolution by natural selection is correct. Then it would follow that humans and the other currently existing species of primates all evolved from a common earlier, more primitive species of primate. Time and time again, Darwin’s theory is supported by evidence of an increasingly complete fossil record. Thus, we can conclude that humans and the other currently existing species of primates have a common ancestor species.

2. Suppose that there is an all-powerful, all-knowing, and all-loving God. Then, since he is all-powerful, he would have the ability to do whatever it would take to eliminate all pain and suffering in the world. Moreover, since he is all-knowing he would be aware of any pain and suffering that existed and would know what it would take to eliminate it. It also follows that since he is all-loving, he would want to eliminate any and all pain and suffering that existed. So, it would follow that there would be no pain and suffering in the world. But there is pain and suffering in the world. Hence, there is no all-powerful, all-knowing, and all-loving God.

3. Suppose that the Christian God exists. Then you have to believe in the Christian God to attain eternal bliss and avoid eternal torment. So you would have everything to gain by believing in this God. But now suppose that the Christian God does not exist. Then death amounts to non-existence for the rest of eternity for anyone, no matter what he or she believes in life. Hence, you would have nothing to lose by believing in God. Now, either the Christian God exists, or he does not exist. So, either you have everything to gain by believing in God, or you have nothing to lose by believing in God. Thus, the rational thing to do is believe in God.

4. Suppose that quantum mechanics is the correct theory about the ultimate nature and behavior of all matter. Then it would follow that fundamental particle are sometimes in a “superposition of states” in which they have no determinate location, until we measure the particle’s position, and the superposition collapses. Certain experiments show that particles do go into a superposition of states that collapses into a determinate location only when we measure the particle’s position. So quantum mechanics must be right.