1. Show “(∃x(F(x) → G(x)) → ∃x(F(x) ∧ G(x)))” is contingent.

Proof: It is iff some I₁ makes the sentence true [⊕] AND some I₂ makes the sentence false [⊗].
By ⊕, I₁ either makes “∀x(F(x) → G(x))” false [⊕] OR makes “∃x(F(x) ∧ G(x))” true [⊕] [TC →]. Since either condition is sufficient, consider ⊕. By ⊕, for some α ∈ D, α does not satisfy “(F(x) → G(x))” on I₁ [TC ∀]. So, α satisfies “F(x)” on I₁ [⊗] AND α does not satisfy “G(x)” on I₁ [⊗] [TC →]. By ⊗, α ∈ “F” on I₁ [TC Atomic] AND by ⊗, α /∈ “G” on I₁ [TC Atomic]. So, take I₁ as follows: D = {1}, “F”: {1}, “G”: {}.
By ⊗, I₂ makes “∀x(F(x) → G(x))” true [⊕] AND makes “∃x(F(x) ∧ G(x))” false [⊗] [TC →]. By ⊗, for every β ∈ D, β satisfies “(F(x) → G(x))” on I₂ [⊗] [TC ∀] AND by ⊗, for every β ∈ D, β does not satisfy “(F(x) ∧ G(x))” on I₂ [⊗] [TC ∃]. By ⊗, either β does not satisfy “F(x)” on I₂ OR β satisfies “G(x)” on I₂ [TC →]. So, either β /∈ “F” on I₂ [⊕] [TC Atomic] OR β ∈ “G” on I₂ [⊕] [TC Atomic]. AND by ⊗, either β does not satisfy “F(x)” on I₂ OR β does not satisfy “G(x)” on I₂ [TC ∧]. So, either β /∈ “F” on I₂ [⊕] [TC Atomic] OR β /∈ “G” on I₂ [⊕] [TC Atomic]. Since 1 and 2 are the same condition and together are sufficient, let I₂ be as follows: D = {1}, “F”: {}, “G”: {}. Since I₁ makes the sentence true and I₂ makes the sentence false, this sentence is contingent.

2. Show “(F(a) ∧ ∀x(F(x) → G(x)) ∧ ¬G(a))” is L-false.

Proof: Suppose not; i.e., some I makes it true.
So, I makes “(F(a) ∧ ∀x(F(x) → G(x)))” true [⊕] AND I makes “¬G(a)” true [TC ∧]. Thus, I makes “G(a)” false [TC ¬][⊕].
By ⊕: I makes “F(a)” true [⊕] AND I makes “∀x(F(x) → G(x))” true [TC ∧][⊕].
By ⊕: on I there is some α ∈ D such that “a” designates α and α /∈ “G” [TC Atomic][⊕].
By ⊕ and ⊕: α ∈ “F” [TC Atomic][⊕].
By ⊕: on I, for every β ∈ D, β satisfies “(F(x) → G(x))” [TC ∀][⊕].
Since β is unrestricted, let β be α. Then, by ⊕ and substitution (α for β), α satisfies “(F(x) → G(x))” on I[⊕].
By ⊕: either α does not satisfy “F(x)” on I OR α satisfies “G(x)” on I[TC →].
⇒ Either α /∈ “F” OR α ∈ “G” [TC Atomic][⊕].
By ⊕ and ⊕: α /∈ “F”. [By disjunctive syllogism].
But, this contradicts ⊕. So, I is impossible. So, no I makes #2 true.
So, the sentence is L-false.

3. Show “((F(a) ∧ (a = b)) ∧ (b = c)) → F(c)” is L-true.

Proof: Suppose not; i.e., suppose some I makes it false.
So, I makes “((F(a) ∧ (a = b)) ∧ (b = c))” true [⊕] AND I makes “F(c)” false [⊗][TC →].
By \(\Box\): I makes “\(F(a)\)” true \([\Box]\) AND “\((a = b)\)” true \([\Box]\) AND “\((b = c)\)” true \([\Box][\text{TC } \land]\).
By \(\mathcal{O}\): on I there is some \(\alpha \in D\) such that “\(c\)” designates \(\alpha\) and \(\alpha \not\in F\) \([\text{TC Atomic}].\)
By \(\mathcal{O}\): “\(b\)” designates \(\alpha\) on I \([\text{TC } =][\Box].\)
By \(\mathcal{O}\) and \(\mathcal{O}\): “\(a\)” designates \(\alpha\) on I \([\text{TC } =][\Box].\)
By \(\mathcal{O}\) and \(\mathcal{O}\): \(\alpha \in “F”\) on I \([\text{TC Atomic}][\Box].\)
But, by \(\mathcal{O}\) and \(\mathcal{O}\), now we have \(\alpha \in “F”\) AND \(\alpha \not\in “F”\). That's a contradiction.
So, I is impossible.
So, no I makes the sentence false.
So, the sentence is L-true.

4. For homework!

5. Show “\(((a = b) \land (b = c)) \land (c = d)) \rightarrow (a = d)\)” is L-true.

Proof: Suppose not; i.e., suppose there is an I that makes it false.
Then I makes “\(((a = b) \land (b = c)) \land (c = d))\)” true \([\Box]\) AND I makes “\((a = d)\)” false \([\Box][\text{TC } \rightarrow].\)
By \(\Box\): I makes “\((a = b)\)” true AND “\((b = c)\)” true AND “\((c = d)\)” true \([\Box][\text{TC } \land].\)
By \(\Box\): on I there is some \(\alpha \in D\) such that “\(a\)”, “\(b\)”, “\(c\)”, and “\(d\)” all designate \(\alpha\) \([\Box][\text{TC } =].\)
But, by the Definition of Identity, on I for every \(\gamma \in D, <\gamma, \alpha> \in “=”.\)
This is a contradiction.
So, I is impossible.
So, no I makes the sentence false.
So, the sentence is L-true.

6. Show “\(\forall x(H(x,a) \rightarrow K(a,x)) \rightarrow (H(b,a) \rightarrow K(a,b))\)” is L-true.

Proof: Suppose not; i.e., suppose some I makes it false.
So \(\Box\) I makes “\(\forall x(H(x,a) \rightarrow K(a,x))\)” true AND \(\Box\) I makes “\((H(b,a) \rightarrow K(a,b))\)” false \([\text{TC } \rightarrow].\)
By \(\Box\): \(\Box\) I makes “\((H(b,a) \rightarrow K(a,b))\)” true AND \(\Box\) I makes “\((H(b,a) \rightarrow K(a,b))\)” true \([\Box][\text{TC } \land].\)
By \(\Box\): \(\Box\) on I for some \(\beta \in D\) and some \(\alpha \in D\) where “\(b\)” designates \(\beta\) and “\(a\)” designates \(\alpha\)
\(<\beta,\alpha> \in “H”\) \([\text{TC Atomic}].\)
By \(\Box\) and designations from \(\Box\): \([\Box] <\alpha, \beta> \not\in “K”\) \([\text{TC Atomic}].\)
By \(\Box\) and designations from \(\Box\): for every \(\gamma \in D, \gamma\) satisfies “\((H(x,a) \rightarrow K(a,x))\)” on I \([\text{TC } \forall].\)
\(\Rightarrow\) either \(\gamma\) does not satisfy “\((H(x,a) \rightarrow K(a,x))\)” on I OR \(\gamma\) satisfies “\((K(a,x))\)” on I \([\text{TC } \rightarrow].\)
\(\Rightarrow <\gamma, \alpha> \not\in “H”\) on I OR \(<\alpha, \gamma> \in “K”\) on I \([\Box][\text{TC Atomic}].\)
\(\gamma\) is unrestricted, so let \(\gamma\) be \(\beta\). By \(\Box\) and substitution, either \(<\beta, \alpha> \not\in “H”\) on I OR \(<\alpha, \beta> \in “K”\) on I.
By \(\Box\) and \(\Box\), \(<\beta, \alpha> \not\in “H”\) on I \([\Box].\)
But \(\Box\) contradicts \(\Box\).
So, I is impossible.
So, no I makes the sentence false. So, the sentence is L-true.
7. Show: \(\forall x \exists y R(x,y) \) \(\not\equiv \) \(\exists y \forall x R(x,y) \)

Proof: there is entailment iff some I makes

[1] “\(\forall x \exists y R(x,y) \)” true

[2] “\(\exists y \forall x R(x,y) \)” false.

By [1], for every \(\alpha \in D \), \(\alpha \) satisfies “\(\exists y R(x,y) \)” on I [TC \(\forall \)]. By [2], if I designates \(\alpha \) by ‘\(\mathbf{m} \)’, then ‘\(\forall x R(x,\mathbf{m}) \)’ is true on I [Def. Sat.]. Thus, for each \(\alpha \in D \), there is some \(\beta \in D \), such that \(<\alpha, \beta> \in “R” \) on I [TC Atomic]. By [2], for every \(\alpha \in D \), \(\alpha \) does not satisfy “\(\forall x R(x,y) \)” on I [TC \(\exists \)].

So, if I designates \(\alpha \) by ‘\(\mathbf{m} \)’, then ‘\(\forall x R(x,\mathbf{m}) \)’ is false on I [Def. Sat.]. So, there is some \(\gamma \in D \), such that \(\gamma \) does not satisfy ‘\(R(x,\mathbf{m}) \)” on I [TC \(\forall \)]. So, if I designates \(\alpha \) by ‘\(\mathbf{m} \)’ and I designates \(\gamma \) by ‘\(\mathbf{k} \)’, then ‘\(R(\mathbf{k},\mathbf{m}) \)” is false on I. [Def. Sat.]. Thus, for every \(\alpha \in D \), there is some \(\gamma \in D \), such that \(<\gamma, \alpha> \not\in “R” \) on I [TC Atomic]. Note that by [2] and [3], it cannot be that \(\alpha \) is always \(\beta \) which is the same object as \(\gamma \) [since if it were, then, substituting \(\gamma \) for both \(\alpha \) and \(\beta \), \(<\gamma, \gamma> \) would be both \(\in “R” \) and \(\not\in “R” \) on I]. So, on I, D must have more than one object in it. Set D={1,2}. The ordered pairs possible from this D are \(<1,1>, <1,2>, <2,1>, <2,2> \). By [2], either ‘\(<1,1> \in “R” \)” on I or \(<1,2> \in “R” \)” on I AND either ‘\(<2,1> \in “R” \)” on I or \(<2,2> \in “R” \)” on I. By [2], either ‘\(<1,1> \not\in “R” \)” on I or \(<2,1> \not\in “R” \)” on I AND either ‘\(<1,2> \not\in “R” \)” on I or \(<2,2> \not\in “R” \)” on I. So let I be as follows: D={1,2}, “R”: \{<1,1>, <1,2>, <2,1>, <2,2>\}. This I makes the sentence in the set on the lhs true and makes the sentence on the rhs false, thus demonstrating entailment.

8. Show \(\{ F(a), G(a), (a = b) \} \models (F(b) \rightarrow G(b)) \)

Proof: Suppose not, so some I makes:

[1] “\(F(a) \)” true

[2] “\(G(a) \)” true

[3] “\((a = b) \)” true

[4] “\((F(b) \rightarrow G(b)) \)” false.

By [3]: on I there is some \(\alpha \in D \) such that “\(a \)” and “\(b \)” both designate \(\alpha \) [TC =]. By [1] and designation from [3]: \(\alpha \in “F” \)” on I [TC Atomic]. By [2] and designation from [3]: \(\alpha \in “G” \)” on I [TC Atomic]. By [4]: I makes “\(F(b) \)” true AND “\(G(b) \)” false [TC \(\rightarrow \)]. By [2] and designation from [3]: \(\alpha \in “F” \)” on I AND \(\alpha \not\in “G” \)” on I [TC Atomic]. But by [7] and [8], this means that \(\alpha \in “G” \)” on I AND \(\alpha \not\in “G” \)” on I. But that’s impossible. So, no entailment I exists.

So, the entailment holds.

9. For Homework!
10. Show \(\forall x(F(x) \rightarrow G(x)), \forall y(G(y) \rightarrow H(y)), F(a) \) \(\models (H(a) \lor H(b)) \)

Proof: Suppose not, so some I makes:
- \([1]\) \(\forall x(F(x) \rightarrow G(x))\) true
- \([2]\) \(\forall y(G(y) \rightarrow H(y))\) true
- \([3]\) “F(a)” true
- \([4]\) “(H(a) \lor H(b))” false.

By \([1]\): on I for every \(\gamma \in D \), \(\gamma \) satisfies “(F(x) \rightarrow G(x))” \([TC \forall]\).

\(\Rightarrow \) \(\gamma \) does not satisfy “F(x)” on I OR \(\gamma \) satisfies “G(x)” on I \([TC \rightarrow]\).

\(\Rightarrow \gamma \notin “F” \) on I OR \(\gamma \in “G” \) on I \([TC Atomic]\).

By \([3]\): on I there is some \(\alpha \in D \) such that “a” designates \(\alpha \) and \(\alpha \in “F” \) \([TC Atomic]\).

By \([4]\) and the designation of \([\alpha]\), \(\alpha \notin “F” \) on I \([by \ disjunctive \ syllogism]\). But this contradicts \([\alpha]\).

So I is impossible. So, no entailment I exists. So the entailment holds.

11. Show \(\forall x(F(x) \rightarrow G(x,x)), \forall x \forall y(G(x,x) \rightarrow \neg F(y)) \) is consistent \([fixed \ typos \ on \ the \ problem \ sheet]\).

Proof: the set is consistent iff some I makes:
- \([1]\) \(\forall x(F(x) \rightarrow G(x,x))\) true
- \([2]\) \(\forall x \forall y(G(x,x) \rightarrow \neg F(y))\) true.

By \([1]\), for every \(\alpha \in D \), \(\alpha \) satisfies “(F(x) \rightarrow G(x,x))” on I \([3][TC \forall]\).

By \([3]\), either \(\alpha \) does not satisfy “F(x)” on I OR \(\alpha \) satisfies “G(x,x)” on I \([3][TC \rightarrow]\).

By \([2]\), either \(\alpha \notin “F” \) on I OR \(\alpha \subseteq “G” \) on I \([3][TC Atomic]\).

By \([2]\) and \([3]\), \(\alpha \notin “F” \) on I \([by \ disjunctive \ syllogism]\). But this contradicts \([\alpha]\).

So I is impossible. So, no entailment I exists. So the entailment holds.

12. Show \(\forall x \exists y R(x,y), \exists y \forall x R(x,y) \) is consistent.

Proof: the set is consistent iff some I makes:
- \([1]\) \(\forall x \exists y R(x,y)\) true
- \([2]\) \(\exists y \forall x R(x,y)\) true.
By ①, for every \(\alpha \in D \), \(\alpha \) satisfies “\(\exists y R(x,y) \)” on I [TC \(\forall \)]. So, if I designates \(\alpha \) by ‘\(m \)’, then ‘\(\exists y R(m,y) \)” is true on I [③][Def Sat.]. By ①, if I designates \(\alpha \) by ‘\(m \)’, then there is some \(\beta \in D \), such that \(\beta \) satisfies ‘\(R(m,y) \)” on I. So, if I designates \(\alpha \) by ‘\(m \)’ and I designates \(\beta \) by ‘\(n \)’, then ‘\(R(m,n) \)” is true on I. [Def. Sat.]. Thus, for each \(\alpha \in D \), there is some \(\beta \in D \), such that \(<\alpha, \beta> \in “R” \)” on I [③][TC Atomic].

By ②, for some \(\gamma \in D \), \(\gamma \) satisfies “\(\forall x R(x,y) \)” on I [TC \(\exists \)]. So, if I designates \(\gamma \) by ‘\(m \)’, then ‘\(\forall x R(x,m) \)” is true on I [Def. Sat.]. Thus, if I designates \(\gamma \) by ‘\(m \)’, then for all \(\alpha \in D \), \(\alpha \) satisfies ‘\(R(x,m) \)” on I [TC \(\forall \)]. So, there is some \(\gamma \in D \), such that for all \(\alpha \in D \), \(<\alpha, \gamma> \in “R” \)” on I [TC Atomic]. So, let I have \(D=\{1\}, \) “\(R \)”: \{<1,1>\}. This I makes both sentences true, so the set is consistent.

13. Show \(\{ R(a,b), R(b,a), \forall x \forall y (R(x,y) \rightarrow (R(x,x) \land R(y,y)), \neg R(a,a) \} \) is inconsistent.

Proof: Suppose not; some I makes:

[①] “\(R(a,b) \)” true
[②] “\(R(b,a) \)” true
[③] “\(\forall x \forall y (R(x,y) \rightarrow (R(x,x) \land R(y,y)) \)” true
[④] “\(\neg R(a,a) \)” true.

By ④, I makes “\(R(a,a) \)” false [⑤][TC \(\neg \)]

By ① and ②, on I there is some \(\alpha \in D \) and some \(\beta \in D \) such that

“\(a \)” designates \(\alpha \) AND
“\(b \)” designates \(\beta \) AND
\(<\alpha, \beta> \in “R” \) [⑥] AND
\(<\beta, \alpha> \in “R” \) [⑦][TC Atomic].

By ⑤, \(<\alpha, \alpha> \notin “R” \) [⑧][TC Atomic]

By ③, for every \(\gamma \in D \), \(\gamma \) satisfies “\(\forall y (R(x,y) \rightarrow (R(x,x) \land R(y,y))) \)” on I [TC \(\forall \)]. So, if I designates \(\gamma \) by ‘\(m \)’, then ‘\(\forall y (R(m,y) \rightarrow (R(m,m) \land R(y,y))) \)” is true on I [Def. Sat.]. Thus, if I designates \(\gamma \) by ‘\(m \)’, then for every \(\chi \in D \), \(\chi \) satisfies ‘\(R(m,y) \rightarrow (R(m,m) \land R(y,y))) \)” on I [⑨][TC \(\forall \)].

\(\Rightarrow \) on I, either \(\chi \) does not satisfy ‘\(R(m,y) \)” OR \(\chi \) satisfies ‘\(R(m,m) \land R(y,y))) \)” [TC \(\rightarrow \)].

\(\Rightarrow \) either \(<\gamma, \chi> \notin “R” \)” on I OR \(<\gamma, \gamma> \in “R” \)” on I and \(<\chi, \chi> \in “R” \)” on I [⑩][TC Atomic].

Note that \(\gamma \) and \(\chi \) are unrestricted in D, so let \(\gamma \) be \(\alpha \) and \(\chi \) be \(\beta \).

By ⑦ and substitution then,

Either \(<\alpha, \beta> \notin “R” \)” on I OR \(<\alpha, \alpha> \in “R” \)” on I AND \(<\beta, \beta> \in “R” \)” on I.

BUT \(<\alpha, \beta> \notin “R” \)” contradicts ⑧

AND \(<\alpha, \alpha> \in “R” \)” contradicts ⑧.

So, I is impossible.

So, the sent is inconsistent.

14. For Homework!
15. Show “¬∀x∃y¬G(x,y)” is semantically inequivalent to “∀x∃yG(x,y)”

Proof: they are inequivalent iff either
 [①] some I makes “¬∀x∃y¬G(x,y)” true AND makes “∀x∃yG(x,y)” false.
 OR [②] some I makes “¬∀x∃y¬G(x,y)” false AND makes “∀x∃yG(x,y)” true.

By ①, I1 makes “∀x∃y¬G(x,y)” false [③][TC ¬] AND for some α ∈ D, α does not satisfy “∃yG(x,y)” on I1 [⑤][TC ∀]. By ⑤, for some β ∈ D, β does not satisfy “∃y¬G(x,y)” on I [⑤][TC ∀]. By ⑤, if I1 designates α by ‘m’, then “∃yG(m,y)” is false on I1 [⑤][Def Sat.]. By ⑤, for every γ ∈ D, γ does not satisfy “G(m,y)” on I1 [⑤][TC ∃]. So, by ⑤, there is some α ∈ D such that, for every γ ∈ D, <α,γ> ∉ “G” on I1 [⑤][TC Atomic]. By ⑤, if I1 designates β by ‘n’, then “∃y¬G(n,y)” is false on I [Def. Sat.]. So, for every γ ∈ D, γ does not satisfy “¬G(n,y)” on I1 [TC 3]. Thus, γ satisfies “G(n,y)” on I1 [TC ¬]. Hence, there is some β ∈ D such that, for every γ ∈ D, <β,γ> “G” on I1 [⑤][TC Atomic]. By ⑤ and ⑤, α and β are distinct objects. Since γ is unrestricted, let γ be α or β. Then, by ⑤ and substitution, <α,β> ∉ “G” and <α,β> ∉ “G”. By ⑤ and substitution, <β,α> “G” and <β,α> member “G”. So let I1 have D={1,2}, “G”: {<2,1>, <2,2>}. This makes the first sentence true and the second sentence false, so they are semantically inequivalent. No need to consider case ②.

16. Show “∀x(F(x) → G(x))” is semantically equivalent to “∀y(¬G(y) → ¬F(y))”

Proof: Suppose not. Then there are two possible cases.
Case 1. Some I makes “∀x(F(x) → G(x))” true and “∀y(¬G(y) → ¬F(y))” false
 ⇒ every α ∈ D satisfies “(F(x) → G(x))” on I [③][TC ∀]
 and some γ ∈ D does not satisfy “(¬G(y) → ¬F(y))” on I [⑤][TC ∀].

By ③, either α does not satisfy “F(x)” on I [⑤] OR α satisfies “G(x)” on I [⑤][TC →]
 AND by ⑤, γ satisfies “¬G(y)” on I [⑤] and does not satisfy “¬F(y)” on I [⑤][TC →].

By ⑤, γ does not satisfy “G(y)” on I [⑤] and by ⑤, γ satisfies “F(y)” on I [⑤][TC ¬].
By ⑤ and ⑤, α ∉ “F” on I or α ∉ “G” on I [TC Atomic] AND by ⑤ and ⑤, γ ∉ “G” on I and γ ∉ “F” on I [TC Atomic].

Since α is unrestricted, let α be γ.
By Substitution: on I, γ ∉ “F” or γ ∉ “G” AND γ ∉ “G” and γ ∉ “F”.
But these contradict. So, this case fails.

Case 2. Some I makes “∀x(F(x) → G(x))” false AND “∀y(¬G(y) → ¬F(y))” true.
 ⇒ some α ∈ D does not satisfy “(F(x) → G(x))” on I [TC ∀]
 AND every γ ∈ D satisfies “(¬G(y) → ¬F(y))” on I [TC ∀].

⇒ α satisfies “F(x)” on I and α does not satisfy “G(x)” on I [TC →]
 AND either γ does not satisfy “¬G(y)” on I or γ satisfies “¬F(y)” on I [TC →].

⇒ γ satisfies “G(y)” on I or γ does not satisfy “F(y)” on I [TC ¬].
⇒ α ∈ “F” on I and α ∉ “G” on I AND either γ ∈ “G” on I or γ ∉ “F” on I [TC Atomic].
Since γ is unrestricted, let γ be α.
So, by substitution: on I, α ∈ “F” and α ∉ “G” AND either α ∈ “G” or α ∉ “F”.
But, these contradict. So this case fails.

Since both cases fail, there are no interpretations that give these sentences different truth-values.
So, these sentences are semantically equivalent.
17. Show “∀x(a = x)” is semantically equivalent to “∀z(z = a)”

Proof: Suppose not. Then, either there is some I₁ that makes
[①] “∀x(a = x)” true AND [②] “∀z(z = a)” false.
OR there is some I₂ that makes
[③] “∀x(a = x)” false AND [④] “∀z(z = a)” true.
Case 1: I₁ makes “∀x(a = x)” true and “∀z(z = a)” false.
By ①, for every α ∈ D, α satisfies “(a = x)” on I₁ [TC ∀]. So, if I₁ designates α by ‘m’,
then ‘(a = m)’ is true on I₁ [Def. Sat.]. So, if I₁ designates α by ‘m’, then I₁ designates α by “a” [⑤][TC =].
By ②, there is some β ∈ D, such that β does not satisfy “(z = a)” on I₁. So, if I₁
designates β by ‘m’, then ‘(m = a)’ is false on I₁ [Def. Sat.]. So, if I₁ designates β by ‘m’, then I₁ does not designate β by “a” [⑥][TC =].
⇒ By ⑤ and ⑥, α and β are distinct [TC =]. So, <β, α> ∉ “=” [⑧][Def. of Identity].
Since α is unrestricted, let α be β.
So, by ⑥ and substitution: <α, α> ∉ “=”. But that’s impossible. [Def. of Identity]
So, this case fails.
Case 2: I₂ makes “∀x(a = x)” false and “∀z(z = a)” true.
By ③, there is some α ∈ D, such that α does not satisfy “(a = x)” on I₂ [TC ∀]. So, if
I₂ designates α by ‘m’, then ‘(a = m)’ is false on I₂ [Def. Sat.]. So, if I₂ designates α by ‘m’, then I₂ does not designate α by “a” [⑧][TC =].
By ④, for every β ∈ D, β satisfies “(z = a)” on I₂ [TC ∀]. So, if I₂ designates β by ‘m’, then
‘(m = a)’ is true on I₂ [Def. Sat.]. So, if I₂ designates β by ‘m’, then I₂ designates β by “a” [⑧][TC =]. By ⑥ and ⑧, α and β are distinct [TC =]. So, <α, β> ∉ “=” [⑩][Def. of Identity].
Since β is unrestricted, let β be α.
So, by ⑧ and substitution, <α, α> ∉ “=”. But that’s impossible. [Def. of Identity]
So, this case fails.
Since both cases fail, no interpretation gives these sentences different truth-values.
So, these sentences are semantically equivalent.