1. Prove that at any conference, the number of people who have shaken an odd number of hands (assuming all handshakes are normal) is even.
This will be a Proof by Induction on the Number of Handshakes.

Set up: Let the collection of conference attendees be C. Partition C into two subsets, E and O, such that E is the collection of conference attendees who have shaken an even number of hands, and O is the collection of conference attendees who have shaken an odd number of hands. Let O^n give the partition of C of people in O at the level of n handshakes. And let $|O^n|$ be the size of the extension of O for a given number of handshakes, n, that have so far occurred at the conference. We will show that for any number of handshakes, $|O^n|$ is even, i.e. $= 2k$ for some k.

2. Show that for any wff of FOL, the number of atoms in the wff is the number of binary operators in the wff, plus one. (Show that for any ϕ [i.e., for ϕ of any complexity n], $|\phi|_a = |\phi|_b + 1$.) This will be a Proof by Induction on the Number of Operators in ϕ.

Set up: Let $|\phi|_a = \#$ of atoms in ϕ. Let $|\phi|_b = \#$ of binary operators in ϕ. Let $|\phi|_o$ = the number of operators (including both binary and unary operators) in ϕ. Let “@$” be any unary operator, i.e., “¬” or “∃” or “∀”. Let “*$” be any binary operator, i.e., “∧” or “∨” or “→” or “↔”.

3. Let Mr. T, \mathcal{T}^x, be an interpretation that makes every atomic sentence of FOL true. Show that Mr. T makes any wff ϕ true where ϕ does NOT contain any unary operators.

This will be a Proof by Mathematical Induction on $|\phi|_b$ (the Binary Complexity of ϕ)