A Neglected Dimension of Semantic Pathology

James A. Woodbridge

Introduction

My concern in this paper is to expose more fully the extent of a problem confronting semantic discourse – sentences that employ predicates expressing semantic notions like truth, falsity, reference or denotation, and predicate-satisfaction – and to sketch a solution to this problem in the form of a novel understanding of our semantic concepts. The problem at issue is the apparent pathological nature of these concepts: the standard operation of the semantic predicates (naively characterized) gives rise, in certain intuitively well-formed sentences employing them, to semantic malfunctioning of some sort.

In illuminating the scope of this semantic pathology, my first goal is to establish that it manifests in two different symptoms: inconsistency and indeterminacy. While there has been much discussion of the inconsistent dimension, there has been comparatively little of semantic pathology’s indeterminate dimension. I claim that this constitutes a serious gap in semantic theorizing, since the latter is both more pervasive and more pernicious than is usually recognized. An adequate account of the semantic notions must treat both symptoms of their pathology.

The method I offer here for dealing with both the familiar and the neglected dimensions of semantic pathology involves an unusual understanding of the semantic notions. More specifically, my hypothesis is that the best way to treat the problem in its entirety is by adopting a fictionalist account of the semantic concepts. As an example of the sort of account I have in mind, I briefly (re-)introduce my pretense view of truth and explain how it handles the phenomenon of semantic pathology as it arises in this notion. The main advantage of this account is that, unlike orthodox approaches, the pretense view includes a diagnosis of semantic pathology that provides a treatment for the symptom of indeterminacy along with that of inconsistency. With the significance of this neglected symptom revealed, the ability to resolve it makes the pretense view more attractive and more plausible than it might initially seem.

1 The first part of this paper comes from research I am pursuing with Bradley Armour-Garb on the nature, extent, and significance of semantic pathology. This is explored in (Woodbridge & Armour-Garb, 2006) and (Armour-Garb & Woodbridge, 2006).
1. Semantic discourse

As I use the expression here, ‘semantic discourse’ picks out the fragment of our talk (and thought) that employs such predicates as ‘is true’, ‘is false’, ‘refers’, ‘denotes’, ‘satisfies’, ‘is true of’, and other related expressions (and their mental analogs). The naïve characterizations of these predicates take the principles governing their use to be the instances of the following schemata:

(T) ‘p’ is true iff p
as in “Crabapples are edible’ is true iff crabapples are edible”

(F) ‘p’ is false iff ~p
as in “Crabapples are edible’ is false iff crabapples are not edible”

(R) ‘n’ refers to n (if at all)
as in “Scout’ refers to Scout”

(S) (\forall x)(x satisfies ‘F’ iff Fx)
as in “Scout satisfies ‘is feline’ iff Scout is feline”.

These schemata capture the basic ideas behind the applicability conditions of the semantic notions, and any restrictions on them seem to be artificial limits on their expressive power. The problem, however, is that, although the semantic predicates function perfectly well in most instances of semantic discourse, in certain cases they end up malfunctioning in virtue of the operation that the instances of these schemata give them. While these problem cases appear well formed, attempts to ascribe them truth-values break down, by yielding either inconsistency or indeterminacy. Since these results derive from the standard operation of the semantic predicates, the underlying problem they indicate is latent in any use of them. This is the sense in which the notions that these predicates express are pathological – more specifically, semantically pathological. To explain this phenomenon and its scope in more detail, I turn to certain paradigm cases that manifest it.

2. Semantic pathology: inconsistency

In order to reveal the extent of semantic pathology more fully, I will start by rehearsing the sorts of cases most discussed in the literature – those manifesting the symptom of inconsistency. Inconsistent semantic pathology is most familiar from its occurrence in liar sentences, such as the simple liar,

(L) (L) is false.

As is well known, attempts to ascribe (L) a truth-value lead to inconsistency: say (L) is true, and it follows that it is false; say (L) is false, and it follows that it is true.

The standard response to the problem – claiming (L) is gappy, that is, neither true nor false – only seems to eliminate the problem, since we are then faced with the strengthened liar,

(L+) (L+) is not true.

(L+) is not true if it is true and true if it is not true (e.g., false, pace dialetheism). If we say (L+) is gappy, then it follows that it is not true. Since this is what (L+) says, it turns out that (L+) is true (and so not true) after all.

This pathological inconsistency also infects certain pairs or loops, e.g.,

(1) (2) is true
(2) (1) is false,

as well as other sets of claims, such as Yablo’s paradoxical infinite sequence of sentences of the form: \((S_k) \text{ For all } k > n, (S_k) \text{ is false,}\) and sets combining semantic and non-semantic claims, such as Set (A):

(3) The moon is made of cheese
(4) The Earth is smaller than the sun
(5) Set (A) contains an odd number of true claims.

While all of the best known cases of this kind of inconsistency involve the notion of truth (or falsity), this symptom of semantic pathology also infects other (naïvely characterized) semantic notions beyond truth, including reference, predicate-satisfaction, and more. The former arises by Berry’s paradox, involving the singular term ‘the least number not denotable in less than 18 syllables’. According to schema (R) for reference, this expression employs 17 syllables to denote the smallest number that it takes at least 18 syllables to denote. The inconsistency in satisfaction shows up by Grelling’s paradox, involving the predicate ‘heterological’ or ‘does not satisfy itself’. Schema (S) for satisfaction

1 (Kripke, 1975; Grover, 1977).
2 (Yablo, 1993a).
3 Roy Cook suggested this partly non-semantic sort of case to me at Logica 2003.
yields that this predicate is true of or satisfies itself if, and only if, it is not true of or does not satisfy itself.5

Still further, certain apparently paradoxical arguments, such as

(I) \[1 = 1 \]
\[
\therefore \text{Argument (I) is invalid.}
\]
suggest that the reach of inconsistent semantic pathology extends to encompass the notion of validity as well. If this argument is valid, then, since its premise is true, so is its conclusion, meaning the argument is invalid. So (I) is invalid if it is valid, and (trivially) it is invalid if it is invalid. But this amounts to a proof that (I) is invalid (as the conclusion claims), given the truth of the premise, which is enough to establish that the argument is valid.6

Even the extent of the inconsistency just illustrated in the semantic notions is often lost in the focus devoted specifically to the liar paradox. Worse still, however, is the fact that there is another entire dimension of the underlying problem that mirrors the inconsistent dimension but which goes largely unacknowledged. This dimension involves the sibling symptom of indeterminacy.

3. Semantic pathology II: indeterminacy

It is true that what I am calling indeterminate semantic pathology has received some attention via consideration of the truth-teller,

(K) \((K)\) is true.7

The problem with (K) is indeterminacy rather than inconsistency, as either truth-value assignment is perfectly consistent here, but nothing favors (or apparently could favor) one over the other. This indeterminacy has an unnoticed extension in a strengthened version of (K), an indeterminate analog to the strengthened liar’s challenge to an appeal to truth-value gaps:

(K+) \((K^+)\) is not false.

If we say \((K^+)\) is true, then, given what \((K^+)\) says, it follows that \((K^+)\) is not false, which is perfectly consistent with (or even, pace dialetheism again, follows from) the assumption of its truth. If we say \((K^+)\) is false, then it follows (by schema (F)) that it is not not false, and so false (pace intuitionism), as assumed.

5 See (Chihara, 1979) on Berry’s paradox and Grelling’s paradox.
6 (Read, 1979).
7 (Herzberger, 1970; Kripke, 1975; Grover, 1977; Yablo, 1985 & 1993b).

If we say \((K^+)\) is gappy, it follows that it is not false. Since that is what \((K^+)\) says, it further follows that \((K^+)\) is true. So in this case too, \((K^+)\) could be either true or false, but there is nothing that makes it one rather than the other.

While (K) (though not \((K^+)\)) has received some notice, it is typically set aside quickly, as theorists devote their attention to dealing with inconsistent cases like (L) and \((L^+)\). The same holds for other, even less discussed, indeterminate cases, such as truth-teller loops like

(1') \((2')\) is true
(2') \((1')\) is true,

and truth-teller series, such as the sequence of sentences of the form \((S_n, S_{n+1})\) is true.8

As in the case of (K), in each of these latter examples the claims involved all get the same truth-value, but either truth-value is perfectly consistent and equally (un)motivated.

The other sorts of inconsistent cases also have indeterminate analogs. Changing the last claim of Set (A) as follows gives us the new Set (A'):

(3') The moon is made of cheese
(4') The Earth is smaller than the sun
(5') Set (A') contains an even number of true claims.

Again, the semantic claim here can be either true or false, but there is nothing favoring one assignment over the other. Indeterminate semantic pathology also mirrors the inconsistency latent in semantic notions beyond truth. Analogous to Berry’s paradox there is the case involving the description ‘the greatest number denotable in less than 18 syllables’; analogous to Grelling’s paradox there is the indeterminate case involving the predicate ‘autological’ or ‘does satisfy itself’.9 Even the extension of inconsistent semantic pathology to validity appears to have an indeterminate analog in the argument

(II) \[1 = 1 \]
\[
\therefore \text{Argument (II) is valid.}
\]

By laying out the indeterminate analogs alongside the inconsistent cases, it is easy to see how the forms and extent of the indeterminacy mirror those of the inconsistency. The following tables illustrate this clearly.

8 (Herzberger, 1970; Kripke, 1975; Grover, 1977).
9 On the indeterminate analog of Berry’s paradox, see (Gupta & Belnap, 1993, p. 264, fn. 23). On ‘autological’ see (von Wright, 1960).
Inconsistency

- (L) (L) is false
- (L+) (L+) is not true
- (1) (2) is not true
- (2) (1) is true
- (Sn) For all k > n, (Sk) is not true

Set (A):
- (3) The Earth is round.
- (4) The Moon is cheese.
- (5) Set (A) contains an odd number of true claims

Indeterminacy

- (K) (K) is true
- (K+) (K+) is not false
- (1') (2') is true
- (2') (1') is true
- (Sn) (Sn+1) is true

Set (A'):
- (3') The Earth is round.
- (4') The Moon is cheese.
- (5') Set (A') contains an even number of true claims

Inconsistency (Non-Alethic)

- 'The least number not denotable in less than 18 syllables' (Berry's paradox)
- '...is heterological' or '...does not satisfy itself' (Grelling's paradox)
- (I) 1 = 1
- :. Argument (I) is invalid

Indeterminacy (Non-Alethic)

- 'The greatest number denotable in less than 18 syllables'
- '...is autological' or '...does satisfy itself'
- (II) 1 = 1
- :. Argument (II) is valid

The fact that indeterminate semantic pathology infects our central semantic notions in the same manner and to the same extent that inconsistent semantic pathology does, strongly suggests that these are two symptoms of a single underlying problem. If so, then a genuine solution to the real problem would have to treat both symptoms. Nevertheless, the symptom of indeterminacy remains largely unaddressed. There have been some attempts to resolve (K) by arguing that it is straightforwardly false. While I do not find these arguments (nor any for (K)'s truth) convincing, I will not discuss this issue here. The reason is that, even if one of these arguments works with respect to (K) and, further, can be extended to truth-teller loops, series, and sets - plus beyond the notion of truth to the indeterminate cases of reference, satisfaction, and validity - none of this will help the semantic theorist. It will not eliminate indeterminate semantic pathology because there are further cases that would remain unresolved.

4. More indeterminate semantic pathology

The paradigm for the further class of intractable indeterminate cases consists in what Bradley Armour-Garb and I have taken to calling the open pair:

- (6) (7) is false
- (7) (6) is false.

Equally (or potentially more) problematic is the strengthened open pair,

- (8) (9) is not true
- (9) (8) is not true.

Assuming a demand for consistency, these pairs exhibit a symmetrical divergence in truth-values: one sentence in the pair is true and the other is false. However, because of the symmetry within the pairs, we can consistently make either truth-value ascription of this sort, and there is no obvious way to motivate one over the other. This symmetry not only generates the indeterminacy in these cases, it is also what makes the indeterminacy intractable, as it thwarts the application here of the strategies employed in arguing for the falsity of (K).

Since we can consistently ascribe truth-values to these sentences, it seems that the semantic theorist must make some assignment to each of (6)–(9) to avoid leaving his semantic theory incomplete. Appeal to a Kripkean fixed-point analysis does not deflect this problem. While such an analysis might motivate making no truth-value assignment to liar sentences, this does not obviously extend to the open pairs, since, unlike liar sentences, the sentences in the open pairs do have truth-values in some fixed points (maximal ones). The problem is that different fixed points assign them different values while agreeing everywhere else, and nothing favors accepting one of these fixed points over another. So, while it seems on the one hand that these sentences should get truth-values, it seems on the other that the only way this can happen is if we just pick one of the divergent assignments arbitrarily. Such a resolution of the indeterminacy is highly unsatisfying because it is blatantly ad hoc. This is unacceptable, at least in the context of a realist view of truth, since it is implausible to hold that an ad hoc account of this sort characterizes a real property.

12 Thanks again to Roy Cook for bringing this sort of case to my attention. The original source for this case is Jean Buridan's Eighth Sophism from Chapter 8 of Sophismata. See (Hughes, 1982, p. 73). A case something like the open pair is presented in (Kripke, 1975, pp. 696–697), and then cited in (Grover, 1977, p. 600), but for them the issue is levels of truth and riskiness. The indeterminacy of the open pair is briefly acknowledged in (Yablo, 2003, p. 319, fn. 10), where it is called "under-determination". Detailed consideration of the open pair's pathological nature is offered in (Goldstein, 1992; Sorensen, 2001, Chapter 11, & 2003; Priest, 2006).

11 (Kripke, 1975, pp. 708–709) makes this point about the truth-teller.
To make matters worse for semantic theorists, the intractable indeterminate semantic pathology that the open pairs exhibit pervades other semantic notions beyond truth. We can see it in predicate-satisfaction by considering the following pair of predicates:

(P1) ...does not satisfy the predicate labeled '(P2)'
(P2) ...does not satisfy the predicate labeled '(P1)'.

In the context of a demand for consistency, each object satisfies exactly one of these predicates, but there is nothing that could determine which.

A similar indeterminacy arises with the following pair of referring expressions:

(N1) The thing(s) not referred to by the expression labeled '(N2)'
(N2) The thing(s) not referred to by the expression labeled '(N1)'.

Assuming consistency again, each object is the referent of exactly one of these descriptions, but, again, their symmetry undercuts any motivation for picking one over the other.

One response to the sorts of open pair cases just canvassed is to try to eliminate their *prima facie* indeterminacy via an appeal to the symmetry of their members. The idea is that since in each of these pairs the first member says of the second what the second says of the first, the members of each pair should always get the same semantic assignment. Since this always yields inconsistency (but not indeterminacy), the open pair cases turn out just to be examples of that more familiar dimension of semantic pathology, to be resolved in the same way as the other cases of this sort. If this is right, and the arguments for the falsity of the truth-teller resolve it and its extensions, the whole issue of indeterminate semantic pathology simply disappears.

Unfortunately, the symptom of indeterminacy is more tenacious than this. The attempt to eliminate it through an appeal to symmetry ultimately fails because there are variants of the open pair cases that exhibit the same indeterminacy without employing symmetric members. Consider the *asymmetric open pair*:

(10) (11) is false
(11) (10) is false → (10) is false.

These sentences yield the same indeterminacy between divergent truth-value ascriptions as do (6) and (7) or (8) and (9): either sentence can be true consistently, so long as the other is false. Unlike in the earlier pairs, however, (10) and (11) do not "say the same thing of one another".

There are also asymmetric variants of the open pairs for predicate-satisfaction,

(P3) ...does not satisfy the predicate labeled '(P4)'
(P4) ...satisfies both the predicate labeled '(P3)' and the predicate labeled '(P4)', or does not satisfy the predicate labeled '(P3)',

and for reference,

(N3) The thing(s) not referred to by (N4)
(N4) The thing(s) either referred to by both (N3) and (N4) or not referred to by (N3).

As with (10) and (11), the members of these pairs do not "say the same thing of one another", so there is no reason to reject divergent semantic assignments. On pain of inconsistency, each object is in the extension of one, but not both of these predicates, and each object is a referent of one but not both of these descriptions. In both cases, however, there is nothing that favors one semantic assignment over the other, yielding indeterminacy.

The following table summarizes the open pair cases and their asymmetric variants.

<table>
<thead>
<tr>
<th>The Open Pair:</th>
<th>The Asymmetric Open Pair:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6) (7) is false</td>
<td>(10) (11) is false</td>
</tr>
<tr>
<td>(7) (6) is false</td>
<td>(11) (11) is false → (10) is false</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The Strengthened Open Pair:</th>
<th>Strengthened Asymmetric Open Pair:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8) (9) is not true</td>
<td>(12) (13) is not true</td>
</tr>
<tr>
<td>(9) (8) is not true</td>
<td>(13) (13) is not true → (12) is not true</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The Reference Open Pair:</th>
<th>Asymmetric Reference Open Pair:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N1) The thing(s) not referred to by the term labeled '(N2)'</td>
<td>(N3) The thing(s) not referred to by the term labeled '(N4)'</td>
</tr>
<tr>
<td>(N2) The thing(s) not referred to by the term labeled '(N1)'</td>
<td>(N4) The thing(s) either referred to by both (N3) and (N4) or not referred to by (N3)</td>
</tr>
</tbody>
</table>

16 These open pair cases derive from research conducted with Bradley Armour-Garb.

14 (Goldstein, 1992) & (Priest, 2006)
15 I assume the material conditional here.
The Satisfaction Open Pair:
(P1) ...does not satisfy the predicate labeled ‘(P2)’

(P2) ...does not satisfy the predicate labeled ‘(P1)’

Asymmetric Satisfaction Open Pair:
(P3) ...does not satisfy the predicate labeled ‘(P4)’

(P4) ...satisfies both (P3) and (P4) or does not satisfy (P3)

With the asymmetric variants on the table, open pair cases appear to leave us with the following unattractive options: accept a pervasive indeterminacy in our central semantic notions, or make semantic theory *ad hoc* by incorporating an arbitrary resolution of this indeterminacy.

5. Semantic pathology and semantic pretense

I maintain that the best way to deal with the problem of semantic pathology, in particular, its neglected dimension of indeterminacy, is to adopt a fictionalist account of the semantic notions. Specifically, I have in mind a view that extends an account of truth I have developed, according to which this notion is part of a semantic pretense. The pretense approach is a recent, non-error-theoretic, fictionalist strategy that explains how speakers can use pretense-involving utterances to make serious assertions about the world. This is a consequence of the special kind of pretense involved in semantic pretense.

The relevant kind of pretense is most familiar from children’s games of make-believe. The interesting aspect of make-believe is that some of what is to be pretended by participants in the game depends on the state of the world outside of the game. Games of make-believe involve rules that determine the way actual circumstances combine with the game’s stipulated pretenses to determine what else is to be pretended (that is, which further pretenses are prescribed). As an illustration of this point, consider taking the children’s game of mud pies to be based on the following stipulative rules as its principles of generation.

(MP1) Globs of mud count as pies.
(MP2) The orange crate counts as an oven.

Given the circumstances that arise in the course of the game, these pretenses generate further pretenses. For example, if, while playing mud pies, Dex puts a glob of mud into the orange crate, it is to be pretended (by participants in the game) that he has put a pie in the oven.

The systematic dependence on reality that a game of make-believe establishes provides a mechanism allowing a speaker to make *indirectly* a serious claim about the world by making *as if* to say something else. Even speakers not playing the game can exploit it in making claims. So, someone watching those engaged in the mud-pies game can report a real-world occurrence by uttering

(14) Corey stole one of Dex’s pies out of the oven.

What this speaker asserts indirectly is just what would be asserted directly by an utterance of

(15) Corey took a glob of mud that Dex had put into the orange crate (as part of a game) out of the crate without Dex’s permission.

Call claims like (14) that invoke pretense in order to make a serious claim indirectly, *partially pretend claims*. By providing a means for serious assertion via partially pretend claims, an appeal to make-believe allows for, rather than undermines, the serious purposes served by a “way of talking.” And if a way of talking is problematic when taken at face value, understanding its claims as partially pretend might explain how it serves any serious purposes at all. We might thus solve certain philosophical problems by recognizing make-believe at work in ways of talking where we have not noticed it before.

I claim the foregoing applies to the fragment of discourse involving the notion of truth (henceforth, *truth-talk*). I take truth-talk to function in virtue of a game of make-believe governed by rules like the following.

I. It is to be pretended that expressions like “is true” and “is false” function predicatively to describe objects as having or lacking certain properties (called “truth” and “falsity”).

II. The pretenses displayed in an utterance of “(The proposition) that p is true” are prescribed if and only if p.

III. The pretenses displayed in an utterance of “(The proposition) that p is false” are prescribed if and only if ~p.

Rules II and III are schematic rules, each providing every possible instance of the given schema. These rules determine the real-world conditions under

17 The following sketch is based largely on the presentation offered in (Woodbridge, 2003). An expanded discussion of the main points of my view occurs in (Woodbridge, 2005). See (Woodbridge, 2001) for the full story.

19 A way of talking is a loosely bounded fragment of discourse (and thought) centered around some expression (concept) or family of expressions (concepts) – e.g., modality, numbers, truth – or around some mode or figure of speech – e.g., metaphor, irony, hyperbole.

20 On pretense-based accounts of existence-talk, see (Walton, 1990, Chapter 11; Evans, 1982, Chapter 10; Kroon, 1996). For pretense-theoretic accounts of other fragments of discourse (metaphor, possible-worlds-talk, and attitude ascription), see (Walton, 1993; Yablo, 1996; Crimmins, 1998).
which particular attributions of truth or falsity make genuinely true claims indirectly. So, truth-talk is not automatically false, meaning this is not an error theory. Rule I shows that truth-talk involves pretense intrinsically; there are no pretense-free uses of the truth-locations because their basic functioning invokes pretense. As a result, truth-talk cannot be taken literally and thus cannot be said to be automatically literally false. These two points placate any initial worry that a pretense-based account of truth-talk involves an incoherent (error-theoretic) circularity.

The pretense view explains a basic instance of truth-talk like

(16) It is true that crabapples are edible

as follows. (16) belongs to the game of make-believe behind truth-talk. It invokes the pretenses that the expression "(the proposition) that crabapples are edible" picks out some object and that this object (made the referent of the pronoun "it" by the usual sort of anaphoric link) is attributed the property by the expression "is true". According to the make-believe, the pretense that this object has this property is prescribed if and only if crabapples are edible. Thus, the serious claim made indirectly with (16) is just that made directly by

(17) Crabapples are edible.

Well behaved instances of truth-talk, such as (16), are partially pretend claims because, while they employ pretenses in order to say what they say, they still manage to make serious claims about the world. An interesting consequence of the pretense view of truth-talk is that it offers a fruitful diagnosis of the problematic instances of truth-talk, specifically, those manifesting semantic pathology. The pathological instances of truth-talk like (L), (L⁺), (K), (1) and (2), (1') and (2'), (6) and (7), etc. all turn out to be what we can call purely pretend claims, rather than partially pretend claims.

The notion of pure pretense is the analog of the notion of ungroundedness for the pretense view of truth-talk. Because instances of truth-talk involve pretense intrinsically, the serious content (if any) of an instance of truth-talk must be inherited from the claim that is the target of the ostensive "truth attribution". In the pathological cases, this always turns out to be (at least in part) an instance of truth-talk. (L) and (K), for example, each end up looking to themselves for any serious content they might have. Since the instances of truth-talk looked to must in turn look to some "other" claim for serious content, and this "other" claim again turns out to be an instance of truth-talk, this situation iterates infinitely. In the pathological cases, the process never lands on any serious content. Thus, these claims are purely pretend - they have only pretend content and so do not reach beyond the bounds of the pretense behind truth-talk.

As the pathological instances of truth-talk are bound within the pretense, we can treat them as we do similar situations arising in works of fiction. The cases exhibiting inconsistent semantic pathology reveal an inconsistency in a fiction - the fiction behind truth-talk. As in other cases of inconsistency in works of fiction, nothing forces us to eliminate the offending contradiction. The Holmes stories as a whole contain a contradiction regarding the location of Watson's sole war wound (it is in his leg and not in his leg). We are not, however, thereby enjoined to conclude that everything follows - that the Earth is flat, that Holmes is a robot, that Watson can fly, etc. - not even just in the fiction. The contradiction is isolated and explosion is blocked. What this means is that the logic of the fiction is paraconsistent. In the case of truth-talk, the inconsistency that certain pathological instances reveal again motivates a move to a paraconsistent logic (perhaps dialetheism).

While this way of dealing with inconsistent semantic pathology might fit especially well with the pretense view of truth, the move to a paraconsistent logic is available to non-pretense approaches as well. The real advantage of the pretense view is the treatment it provides for indeterminate semantic pathology. As purely pretend claims, instances of truth-talk such as (K), (1') and (2'), and (6) and (7) reveal an indeterminacy in the fiction behind truth-talk. But in the case of a fiction, this sort of indeterminacy is just an openness, an aspect of the fiction that is not specified but which could have been in a number of different ways without affecting the rest of the story.

Consider, for example, the question of whether Santa Claus has an odd or even number of hairs in his beard. Nothing in the Santa Claus story determines that the number in question is one rather than the other; it could be either. If pressed to resolve this "indeterminacy" we can do so by stipulation. Whichever answer we pick, the resolution simply amounts to extending the fiction in one way as opposed to another. The same holds for the pathological instances of truth-talk that manifest the symptom of indeterminacy. In the case of (6) and (7), we can just stipulate, e.g., that the first is true and the second is false. We are free to resolve their indeterminacy in this fashion, since their status as purely pretend claims means that here too this just amounts to extending a fiction in one way rather than another. This sort of resolution does turn out to be ad hoc, since it is arbitrary and stipulative, but because it occurs just in the context of extending a fiction, the ad hocery is benign. The move to a fictionalist account of truth thus makes all the difference for resolving semantic pathology's symptom of indeterminacy, since in the context of a non-fictionalist view, this sort of ad hocery is unacceptable.

21 Thanks again to Roy Cook, here for the initial suggestion that a reading of this sort is available to the pretense view. Thanks to Bradley Armour-Garb regarding our further development of this idea along the lines presented here.
6. Conclusions

The neglected indeterminate dimension of semantic pathology poses a serious, but not fully appreciated, problem for anyone wishing to offer an account of our central semantic notions. Orthodox approaches to semantic theorizing focus mainly on inconsistent semantic pathology, having little to say about the symptom of indeterminacy even though the latter is just as pervasive and recalcitrant. An adequate account of the semantic notions must deal with both symptoms of semantic pathology.

I have shown here how the diagnosis a pretense view of truth provides of the pathology arising in that semantic concept allows for treatment of both its symptoms. In particular, the treatment the pretense view of truth makes possible for the indeterminacy latent in this notion lends a degree of plausibility to the view that it might lack prima facie. With this backing, this account of truth can then serve as a model for similar accounts of the other semantic concepts. Such accounts await articulation, but the move to fictionalism regarding the semantic notions across the board would at least provide a means for dealing with the full extent of their pathological natures.

References

