Temperature Regulation During Exercise

Chapter 4

Temperature Regulation

• Human body range must stay within a narrow range of temperatures.
 – Normal is about 37°C or 98.6°F
• Muscle contraction has an efficiency of about 30-33%.
 – Which means a lot of energy is released as heat.
• Endurance performance is affected by
 – The ability to get rid of excess heat in a hot environment.
 – The ability to retain heat in a cold environment.

Heat Exchange During Exercise

Heat Balance

• The goal of temperature regulation is to maintain a constant core-body temperature ().
 – Heat loss must match heat gain.
• A function of the is to transport heat.
 – During exercise where heat must be lost, blood flow is increased to the skin.
 • Promotes heat loss to the environment.
 – During exercise where heat must be retained, blood flow is directed away from the skin.

Temperature Regulation

• Controlled by the
 – Works like a thermostat

Heat Transfer

• Energy can be transformed from one form to another.
• Terms like “ ” and “Heat Loss” are descriptors of
 – Transformation of energy from one form to another.
 • Chemical to heat
 – Transfer of energy from one object to another.
 • Heat gradient: Heat will flow from objects with high temperature to objects with low temperature.
Heat Production

• The body produces heat through
 – Normal _____________ processes
 • Not very large production of heat
 – Voluntary _______________ (exercise)
 • Heat results from contraction
 – Involuntary muscle contraction (e.g., shivering)
 • Shivering can increase heat production as much as ____________ resting.

Heat Loss (usually)

• Mechanisms of heat loss from the body:
 – ______________
 • Heat loss to the environment in the form of infrared rays.
 • No physical contact.
 – Conduction
 • Heat flow from cooler object to hotter object where objects are in contact.
 • A form of conductive heat loss.
 • Heat is transmitted to air or water molecules and moved away from heat source (e.g., fan).
 – Evaporation
 • Change from liquid form to vapor.
 • Heat is transferred to the skin via water. When water has reached sufficient heat, it is converted to a gas (water vapor).

Factors that Affect Heat Balance

• Exercise intensity

Factors that Affect Heat Balance

• Wind
 – Heat loss by ______________
 • Must consider relative wind speed
 • Head wind vs. tail wind
 • High temperatures
 – If exercise is in an environment equal to or greater than body temperature, heat cannot be lost via ______________.
 • Heat can be gained by the body in this type of environment.
 • ______________ is an important mechanism of heat loss in hot environments.
 • If humidity is high, sweat does not vaporize but drips off body without producing a cooling effect.

Factors that Affect Heat Balance

• Low temperatures
 – The concern in low temperature environments is when the rate of heat loss exceeds the rate of heat production.
 • ______________
 • Low body temperature
 • The body is better designed to lose heat energy vs. retain heat energy.
 • Clothing is important
Factors that Affect Heat Balance

• Cloud cover
 – The amount of ____________________ which the athlete is exposed to is greatest when there is no cloud cover.

• Clothing
 – As an ____________
 • Traps a layer of air between skin and clothing.
 • Air is a poor conductor of heat (i.e., insulator).
 • Wear sufficient clothing to keep warm but not so much that you start to sweat.
 • Insulating properties of clothing are generally lost when they become wet.
 – To promote heat loss
 • Should not interfere with evaporation
 – Mesh singlet, breathable fabric for shorts and shirts

• Heat ________________
 – Performance can be impaired if the athlete is not acclimatized to heat.
 – Heat acclimatization begins after the first exposure and is fully developed in ______________.
 • The optimum acclimatization program is to exercise daily at intensities greater than ________________.
 – Individual variability
 • Stimulus for acclimatization is raising the core temperature.
 • Characterized by earlier onset of sweating, increase in sweat capacity, reduced losses of sodium and chloride.
 – Heat acclimatization is retained for a few days up until about a week after returning to cooler climates
 • Complete loss of acclimatization ______________.

Factors that Affect Heat Balance

• Dehydration
 – Loss of fluid from body due to:
 • Ingestion of water during exercise enhances the ability to sustain the same exercise intensity for longer duration.
 • Including carbohydrate in the drink is better than water alone (prevents hypoglycemia; possible placebo effect).
 • Fluid ingestion decreases the perception of effort.
 • Fluid ingestion ad libitum is as beneficial as higher rates of forced ingestion.

Dehydration

• Several studies (Adolph, 1947; Pugh et al., 1967; Wyndham and Strydom, 1969) demonstrated that:
 – Endurance athletes ____________ during competition.
 • Voluntary dehydration
 – Top finishers were ____________ and had high rectal temperature.
 • But there were no dangers to athletes who were dehydrated.
 • Two interpretations:
 – Fluid intake should be promoted.
 • Prevent heatstroke (failure of the heat-regulating mechanisms in the body).
 – To be a top endurance athlete you need to be able to tolerate levels of dehydration.

• Is dehydration a cause of fatigue?
 – Noakes reviews some of the early work on dehydration during exercise in the heat.
 – Even when given free access to adequate fluids, subjects drank less than they lost in sweat or urine.
 – Progressive dehydration was associated with premature fatigue.
 – Subjects stopped exercise when they lost about 7-10% body weight.
 – Dehydration did not reduce sweat or urine rate during exercise.
 – Rectal temperature and heart rate rose linearly with level of dehydration.
 – There were no immediate health risks associated with levels of dehydration (7-10%). Only at high levels of dehydration (15-20%) was there a risk of serious organ failure (e.g., kidney).
 • Ingestion of fluid prolonged exercise (preventing dehydration).
 • The impact of dehydration: stopping exercise.
 • There is no empirical evidence that endurance performance will be optimized if fluid is ingested at the same rate that it is lost during exercise.
 • McConnel et al. (1979) reported that replacing 100% sweat lost during exercise did not improve performance more than did replacing only 50% of that loss.
 • Exercise in the heat is limited by ______________.
 • Ingesting fluid is an important mechanism to keep body temperature controlled.
 • There may be a trade off to ingesting too much fluid (e.g., hyponatremia, excess weight, gastrointestinal problems).