Running Economy

• ________ by itself is not a good predictor of endurance performance.

• ___________ may be more important.
 – _____________________________________
 _____________________________________.
 • ml/kg/min for a given speed

Running Economy

• The amount of oxygen consumption for a given speed.

Running to cover a distance aerobically

<table>
<thead>
<tr>
<th>Speed (m/s)</th>
<th>Energetic Cost (ml/kg/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Running</td>
</tr>
<tr>
<td></td>
<td>Walking</td>
</tr>
</tbody>
</table>

Hreljac, 1993, MSSE
Holt, Hamill, & Andro, 1991 MSSE
Factors that Affect Running Economy

- Running style
 - Up/down movement
 - Biomechanical factors
 - Technique / type of activity

Rate of Oxygen Consumption
at different speeds with different stride lengths

- SF changes slightly
- "U-shaped" curve
- Little change in VO₂ near PSF.
- PSF important as velocity increases.
Factors that Affect Running Economy

- Muscle capacity to store energy
 - ________________ (i.e., springs)
 - Tendon, titan, ...

- Fitness and training
 - ________________
 - ~1-4% improvement without changes in VO2max

- Age
 - ________________
 - But become more economical with age.
 - Training, weight gain, running mechanics, elastic

Factors that Affect Running Economy

- Fatigue
 - Maybe due to damage to elastic material.
 - Stretch-shortening cycle
Factors that Affect Running Economy

• Gender
 -
 - ...but because body composition varies between gender, maybe women would be more economical if this was controlled.

• Ethnicity
 - May be a factor … but not clear if ethnicity or culture effect.
 - African pygmies were about 10% more economical than Caucasians when running but not when walking.

Factors that Affect Running Economy

• Added weight (clothing and shoes)
 - Running economy is influenced by what is worn.
 - Adding weight
 - 0.5 kg added to the thigh
 - 0.5 kg added to the foot
 - ~1% increase in RE for every 100 g added to the foot.
 - Shoes weigh about 160 g (racing flats) to 310 g (trainer)
 - Orthotics weigh about 80 g

Factors that Affect Running Economy

• Environmental conditions
 - Running uphill
 - Running surface
 - Sand, snow, soft surfaces
 - worse RE
 - "tuned" track?
Factors that Affect Running Economy

Environmental conditions:

• Wind
 \[D = \frac{1}{2} (\rho \cdot C_d \cdot A \cdot V^2) \]
 - \(\rho \): Density
 - \(C_d \): Coef. of drag
 - \(A \): Frontal area
 - \(V \): Velocity
 - \(\sim 8\% \) of energy is used to overcome air resistance
 - 6 m/s or 4 min 30 s min/mi
 - Drafting reduces energy cost
 - Greatest effect at speeds 18 kph (11.2 mph)
 - Follow within 1 m (i.e., as close as possible)
 - On TM, set grade to 1-2 %

• Grade
 \[VO_2 = v(0.2 + \text{grade} \times 1.8) + 3.5 \]

Summary: Part 2

• Running Economy
 - vs. VO2max
• Factors that influence RE
 - Running style
 - Fitness/training
 - Age
 - Fatigue
 - Gender
 - Ethnicity
 - Added weight
 - Environmental conditions
 - Grade, surface, wind

Suggestions to Improve Running Economy

• Training can improve RE more so than VO2max
• Training increases the running speed at the LT
 - The %VO2max that can be sustained increases
• Noakes hypothesizes that \(\text{_____________} \) is reduced with training
• It is not clear what training program is best for improving RE
• Practical suggestions:
 - Minimize shoe and clothing weight
 - Aerodynamics (e.g., tight fitting clothing)
Predicting Running Performance

• Noakes: VO2max is an ______________ of athletic performance
 – It is a measure of VO2 at the ______________ (i.e., speed, grade)
 – It is not possible to run at VO2max for more than a few minutes
 – Trained runners can sustain a speed that elicits 80-95% of VO2max
• The ________________ at VO2max
• The work rate at the lactate turnpoint
• ______________
 – Use this to test how prepared you are for a marathon

Limits to Performance

• No one knows what limits performance
• Sprint vs. Endurance performance
 – ______________________________
 – Sprinters can transform energy from chemical to mechanical at high rates but are not fatigue resistant
 – Endurance runners are fatigue resistance but do not transform chemical energy to mechanical at high rates

Limits to Endurance Performance

• Noakes: ______________ contribute to running performance
 – Superior heart and skeletal muscle function
 • Allows fastest athletes to maximize muscle power output
 – Ability to resist fatigue during prolonged exercise
 • Endurance performance limited by ______________ of cardiac muscle
 – Response to heat?
 – Glycogen stores?
 – Blood glucose levels?
 – Skeletal muscle damage?
Prediction Tables

- Based upon
 - past performances
 - Knowledge of VO2max and running economy (i.e., the percent VO2 that can be sustained)
- Do not account for
 - Environmental conditions
 - Grade, wind, temperature
 - Differences in subjects

Davies-Thompson

- Must know
 - VO2max
 - Percent that can be sustained
- Example
 - VO2max = 60 ml/kg/min
 - %VO2max: 50% (i.e., 30 ml/kg/min)
 - Running speed (km/h) = (%VO2 + 7.736) / 3.966
 - 9.5 km/h could be sustained

1. Osler and 2. Gardner-Purdy

- Prediction tables that include ‘quality’ of performance
 - Quality is not on a linear scale with time
Mercier-Leger-Desjardins

- Nomogram
 - Connect two race times with a straight line
 - Estimate VO2max
 - Estimate other times
 - Determine ‘quality’ of performances

Summary of Prediction

- VO2max is not necessarily a great predictor of endurance performance
 - This might be because VO2max is a result of performance vs. a determinant of performance.
- Past performances are the best predictor of endurance performance.
 - 10 K
 - Time for 42 km = 5.48 x (10K in min) – 28 (min)
 - 10 K = 40 min
 - 5.48 x 40 – 28
 - 191.2 min or 3.2 hrs or 3 hours and 12 mins

Summary of Prediction

- The ability to predict endurance performance is dependent on identifying the fatigue resistance an athlete has.
 - The % VO2max is important
 - Or, the % of max work rate
 - An athlete can use the prediction tables to determine his/her level of fatigue resistance.
 - Monitor training progress
 - Identify overtraining, detraining
Changes with Aging

• Reduction in VO2max
 – 10% reduction per decade
 • Maybe 5% per decade for trained
 • Why?
 – Reduced blood flow to the heart
 – Reduced cardiac output
 – Decreased permissible mass of skeletal muscle that can be recruited
 – Reduction in skeletal muscle contractility

Changes with Aging

• Muscular components
 – Especially at ages greater than 50/60 yo
 • Muscle strength is somewhat maintained up to about 50.
 – 15% loss per decade up to 70, then a 30% loss per decade
 • Type I and II fibers both lost
 – Type I retain normal size; Type II are smaller
 – Oxidative capacity decreases with age but is reversible with training
 • The number of motor neurons decreases after 60,

Changes with Aging

• Body composition
 – _______ with aging has a negative impact on VO2max
 • Training helps reduce increase in body fat
 • …remember, muscle mass is decreasing
Changes with Aging

• Training changes
 – General reduction in training volume and intensity accounted for 28% and 35%, respectively, in variance of VO2max (Marti and Howald, 1990).
 • Which comes first?
 – Reduced training leads to reduced VO2max
 – Reduced VO2max leads to reduced training
 • Athletes who are genetically better endurance athletes may have a reduced decrement of VO2 (and reduced training)

Changes with Aging

• Capacity to absorb landing forces
• Capacity to attenuate landing forces
• Capacity to absorb impact energy

Changes with Aging

• The body has to manage the impact while also generating the right amount of force to generate the next stride.
Changes with Aging

- Do elite runners damage skeletal muscle in such a way that they cannot be competitive at an older age?
- Noakes hypothesizes that high volume and intensity can only be sustained for about 15 years.

Changes with Aging

- Case study: Basil Davis
 - Completed 122 marathons
 - 34 Comrades marathons
 - 56 ultramarathons
- Training log
 - After age 50, he recorded he always "seems to be stiff."
 - After age 45, his marathon performance deteriorated at a fast rate.
 - In later years, he could not predict his marathon time based on his 10K time.

Changes with Aging

- Does __________________ accumulate over time?
- Is there a breakdown of the elastic behavior of the lower extremity?
 - Muscle contraction is important to maintain the tension on the connective tissue.
 - Is exhaustion (at any age) a simulation of aging?
 - Is "hitting the wall" a function of the breakdown of elastic tissue?
- Noakes hypothesizes that when the ______ are damaged the central governor will force the body to run at a slower pace to protect the muscles and joints.
<table>
<thead>
<tr>
<th>Changes with Aging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharwood et al. (2000)</td>
</tr>
<tr>
<td>– 20 marathon and ultramarathon performers</td>
</tr>
<tr>
<td>– Runners who accumulated more than 5000 km in racing used a different muscle recruitment strategy than those who raced less.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Changes with Aging</th>
</tr>
</thead>
<tbody>
<tr>
<td>The ability to recover from intense exercise is impaired with aging.</td>
</tr>
<tr>
<td>Runners get injured</td>
</tr>
<tr>
<td>Are older runners more susceptible to injuries?</td>
</tr>
<tr>
<td>Aging does not seem to negatively influence adaptation to training</td>
</tr>
<tr>
<td>Volume and Intensity may be reduced with aging</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summary of Changes With Aging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction in VO2max</td>
</tr>
<tr>
<td>Muscular components</td>
</tr>
<tr>
<td>Body composition</td>
</tr>
<tr>
<td>Training changes</td>
</tr>
<tr>
<td>Capacity to absorb landing forces</td>
</tr>
<tr>
<td>Recovery</td>
</tr>
<tr>
<td>Chronic orthopedic disabilities</td>
</tr>
<tr>
<td>Ability to adapt to training</td>
</tr>
</tbody>
</table>