Running Performance

Chemical Energy \[\xrightarrow{\text{Aerobic}}\] Mechanical Energy

- Development of useful Mechanical Energy
 - Neuromuscular coordination
 - Transforming energy
 - Rate
 - Efficiency

Exercise Intensity

- Exercise intensity during running increases …
 -
 -
- The amount of energy transformed from chemical to mechanical increases
 - Aerobically: ATP \to HOH \to CO2
 - VO_2
 - Anaerobically: ATP [La]

Exercise Tests
VO₂max

- \(V \)
- \(O_2 \)
- \(\text{Max} \)
- ‘dot’
- \(\text{VO}_2^{\text{max}} \) Maximal rate of oxygen consumption
 - \(\text{ml/kg/min} \)
 - \(\text{L/min} \)

Graded Exercise Test

- vs. Stress test
- Guidelines
 - Mode
 - Running vs. biking
 - Walking vs. running
 - Time
 - Intensity
 - Graded
VO2max

• What does VO2max measure?
• What is its value to athletes?
• Why do people stop exercising at VO2max?

History

— _______________________________

vs.

— _______________________________
Cardiovascular/Aerobic Model

- High intensity exercise is limited by the development of anaerobic conditions in the active muscles.
 - Oxygen delivery to the muscles plateaus forcing the muscles to rely on anaerobic metabolism for energy supply.

Does a plateau exist?

- Plateau observed in 30% of subjects (Noakes 1998b; Doherty et al., 2002).
- Seldom identified in children (Rowland, 1993).

- The __________________ does not imply that exercise can continue indefinitely.
 - Exhaustion is real
- The __________________ that sufficient oxygen is still being delivered to muscles.

Plateau

- If a plateau does exist, that means that __________ flow is being delivered to muscles.
- That means that the heart fatigues before skeletal muscles.
 - Ischemic?
 - Healthy runners do not terminate GXT due to chest pain.
 - …but, there must be some type of protective mechanism to avoid the heart from fatigue.
 - Meaning that the capacity of the heart limits VO2max.
Central Governor Model

- The heart is at the greatest risk of developing ____________ during exercise.
- A ‘governor’ monitors the state of oxygenation of the heart (and maybe other organs such as the brain and diaphragm).
- When ____________ approaches safe limits, the brain is informed and muscle recruitment is altered.
 - Result: Fatigue, exhaustion, pain
 - Individual exercise capacity may be a result of coronary blood flow, heart/skeletal muscle efficiency, contractility, and/or elasticity.
Coronary Circulation

- Cardiac muscle receives oxygenated blood via coronary arteries (originating in aorta) not internally through chambers.
- Deoxygenated blood is returned via coronary veins.
- About 20% of oxygen is extracted from the blood.
- Ischemia: Inadequate blood flow.
- Cardiac Output = ___________ of oxygen is extracted from the blood.

- SV: Amount of blood extracted from the Left Ventrical each beat.

Achieving VO2max

- VO2max:
 - Low work rates combined with inefficient hearts and muscles (poor contractile performance).
 - Inefficient transformation of energy from chemical to mechanical
 - VO2max
 - High work rates combined with efficient hearts and muscles.
 - Produce less heat

Muscle Power Model

- Athletes of differing abilities may differ in contractility performance of individual muscle fibers (regardless of type).
Summary Part 1

• VO2max
 – Plateau or not?
 – Explained by
 • Cardiovascular Model
 – Inability of muscles to receive adequate oxygenation
 • Central Governor Model
 – Protective limit to cardiac muscle
 • Biomechanical Model
 – Differential contractility performance between humans

Factors that affect VO2max

• Age __________________ per decade (after 25 yo)
• Gender ____________________
 – Higher body fat content, smaller muscle mass.
• Fitness and Training
 – Training can increase VO2max __________________
• Altitude
 – VO2max decreases about ___________________ (3280 feet) above 1200 m (4000 feet).
 • LV ~2200 feet
 • Mt Charleston ~8000-10,000 feet
• Ventilatory muscle action

Running Economy
Running Economy

- ml/kg/min for a given speed

Running Economy

- ml/kg/m for a given speed

Running to cover a distance aerobically

Energetic Cost (ml/kg/m)

- Running
- Walking

Hreljac, 1993, MSSE
Holt, Hamill, & Andres, 1991 MSSE
Rate of Oxygen Consumption at a set speed with different stride lengths

- VO2 (ml/kg/min)
- Stride Length

Rate of Oxygen Consumption at different speeds with different stride lengths

- SF changes slightly
- ‘U-shaped’ curve
- Little change in VO2 near PSF.
- PSF important as velocity increases.

Running Economy

- Improved (better, greater) Running Economy = lower VO2 per speed.
Factors that Affect Running Economy

• Running style
 – Up/down movement
 – Biomechanical factors
 – Technique / type of activity

Factors that Affect Running Economy

• Muscle capacity to store energy
 – ________________ (i.e., springs)
 • Tendon, titan, ...

Factors that Affect Running Economy

• Fitness and training
 – People become more economical with training.
 • ________________ without changes in VO2max

• Age
 – Children ________________ runners than adults.
 • But become more economical with age.
 – Training, weight gain, running mechanics, elastic
Factors that Affect Running Economy

• Fatigue
 – Running economy is _______ (e.g., end of a long run).
 • Maybe due to damage to elastic material.
 – Stretch-shortening cycle

• Gender
 – _______ running economy.
 • …but because body composition varies between gender, maybe women would be more economical if this was controlled.

• Ethnicity
 – May be a factor … but _______ or culture effect.
 • African pygmies were about 10% more economical than Caucasians when running but not when walking.

Factors that Affect Running Economy

• Added weight (clothing and shoes)
 – Running economy is influenced by what is worn.
 – _______ has a greater negative effect on running economy.
 • 0.5 kg ______________ increased RE 3.5%
 • 0.5 kg ______________ increased RE 7.2%
 • ~1% increase in RE ______________.
 – Shoes weigh about 160 g (racing flats) to 310 g (trainer)
 – Orthotics weigh about 80 g
Factors that Affect Running Economy

- Environmental conditions
 - Running uphill
 - Running surface
 - Sand, snow, soft surfaces
 - worse RE
 - "tuned" track?

- Environmental conditions:
 - Wind
 - overcome air resistance
 - 6 m/s or 4 min 30 s a min/mi
 - Drafting reduces energy cost
 - Greatest effect at speeds 18 kph (11.2 mph)
 - Follow within 1 m (i.e., as close as possible)
 - On TM, set grade to 1-2 %

Summary: Part 2

- Running Economy
 - vs. VO2max
- Factors that influence RE
 - Running style
 - Fitness/training
 - Age
 - Fatigue
 - Gender
 - Ethnicity
 - Added weight
 - Environmental conditions
 - Grade, surface, wind