Muscle Structure: Classification

- Smooth
 - Spindle shaped
 - Uninucleated
- Striated
 - Cardiac
 - Autonomous system
 - Cylindrical
 - Skeletal
 - Voluntary control
 - Cylindrical
 - Striated

Muscle Structure

- Human body contains over ___ skeletal muscles
 - _____ of total body weight
- Characteristics
 - Irritability
 - Ability to respond to a stimulus
 - Ability to shorten
 - Extensibility
 - Ability to lengthen
 - Elasticity
 - Ability to return to resting length

Structures in a typical cell

Gross Structure of Muscle

- Surrounds entire muscle
- Surrounds bundles of muscle fibers
 - Fascicles
- Surrounds individual muscle fibers
Microstructure of Skeletal Muscle

- **Sarcolemma**: Muscle cell membrane
- **Myofibrils**: Threadlike strands within muscle fibers
 - Z-line, M-line, H-zone, A-band & I-band
- **Elastic tissue (proteins)** within the sarcomere:
 - Extends from the Z-disc to the M-line.
 - Elastic in PEVK region
 - Amino acids: proline, glutamate, valine, and lysine
- **Connective tissue related to fatigue?**
 - Weight bearing vs. non-weight bearing
 - "Hitting the wall"

Within the sarcoplasm
- **Sarcoplasmic reticulum**
- **Transverse tubules**
- **Terminal cisternae**
- **Mitochondria**

Neuromuscular Junction
- **Motor end plate**: pocket formed around motor neuron by sarcolemma
- **Neuromuscular cleft**: short gap
- **Ach** is released from the motor neuron:
 - Causes an end-plate potential (EPP)
 - Depolarization of muscle fiber

Muscle Structure
Key components in the muscle cell

- **Mitochondria**
 - Within muscle cell (in cytoplasm)
 - Main function: Location of oxidative conversion of foodstuffs into usable cellular energy
 - Limiting factor in running endurance performance?
- **Fat Droplets**
 - Fats generally stored in fat cells
 - ...but, can be stored in muscle cell as triglyceride molecules
 - Source of energy
 - Lipolysis; enzyme: lipase
Muscle Structure

Key components in the muscle cell

- **Glycogen**
 - Polysaccharide (i.e., animal starch)
 - Lots of glucose molecules
 - Breakdown of glycogen to glucose
 - Formation of glycogen from noncarbohydrate sources
 - Formation of glycogen from carbohydrate sources
 - Glycogen stored in muscles and liver
 - Total glycogen storage is relatively small and can be depleted in a few hours of exercise

Muscle Structure: Fiber Type

- **Oxidative**
 - High content of myoglobin
 - Orbital transfer: solar to mitochondria and not as a glucose source in suicidal
 - Slow contraction time vs. Type II
 - but contraction time for some athletes may be comparable to Type II contraction times of non-athletes
 - Fatigue resistant

- **At least 5 subtypes (Ia, Ib, IIc, IIb, IIc)**
 - Type Ia
 - Oxidative-lycocytic
 - Intermediate — can be fatigue resistant
 - Type Ib
 - Glycotic
 - High force production
 - Short duration
 - Unclear origin
 - Capable of being developed to I or IIa?
 - More power than Ib

Muscle Fiber Types

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Fast Fibers</th>
<th>Slow fibers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type IIb</td>
<td>Type Ia</td>
</tr>
<tr>
<td>Number of mitochondria</td>
<td>Low</td>
<td>High/mod</td>
</tr>
<tr>
<td>Resistance to fatigue</td>
<td>Low</td>
<td>High/mod</td>
</tr>
<tr>
<td>Predominant energy system</td>
<td>Anaerobic</td>
<td>Combination</td>
</tr>
<tr>
<td>ATPase</td>
<td>Highest</td>
<td>High</td>
</tr>
<tr>
<td>V_{max} (speed of shortening)</td>
<td>Highest</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td>Specific tension</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

Muscle Function

- **Primary functions related to human movement:**
 - Maintain Posture
 - Stabilize Joints
 - Generate Force
 - Other functions:
 - Protection
 - …

Muscle Contraction

- CNS signal
- …
- Upon reaching post-synaptic membrane threshold, signal is transmitted throughout muscle fibers of a motor unit (α motor neuron and all innervated muscle fibers).

Muscular Contraction

- The sliding filament model
 - Muscle shortening occurs due to the movement of the actin filament over the myosin filament
 - Reduction in the distance between Z-lines of the sarcomere
The Sliding Filament Model

Actin & Myosin Relationship

- Actin
 - Actin-binding site
 - Troponin with calcium binding site
 - Tropomyosin
- Myosin
 - Myosin head
 - Myosin tails

Energy for Muscle Contraction

- __________________ is required for muscle contraction
 - Myosin ATPase breaks down ATP as fiber contracts
- Sources of ATP
 - Phosphocreatine (PC)
 - Glycolysis
 - Oxidative phosphorylation

Muscle Function:
Role of Muscle

- _____________: (prime mover) functions to cause a movement
- _____________: functions to resist movement
- Stabilizer: functions to fixate an area so another movement can occur
- Synergist: assist another muscle
- Neutralizer: functions to prevent undesired movement

Muscle Function:
Muscle Action

- ________: No change in muscle length
- ________: Change in length (same external weight)
 - Concentric
 - muscle length shortens during contraction
 - Eccentric
 - muscle length increases during contraction
- ________: Angular speed is constant during contraction
 - Concentric
 - Eccentric
Muscle Performance

• How well muscle functions are carried out.
 – i.e., ability to generate force
• Factors that influence muscle performance:
 – Angle of attachment and pennation
 – Length-tension relationship
 – Force-velocity relationship
 – Fatigue

Muscle Performance: Angle of Attachment and Pennation

Muscle Performance: Length-Tension Relationship of Muscle Contraction

Muscle Performance: Force – Velocity Relationship

Muscle Performance

Fiber Type Composition
Sprinters vs. Endurance Athletes

<table>
<thead>
<tr>
<th>Type of Athlete</th>
<th>Type I Muscle Fibers (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprinters</td>
<td>26</td>
</tr>
<tr>
<td>Sprinters and Jumpers</td>
<td>37-39</td>
</tr>
<tr>
<td>Weight lifters</td>
<td>44-49</td>
</tr>
<tr>
<td>Cyclists and swimmers</td>
<td>50</td>
</tr>
<tr>
<td>Middle-distance runners</td>
<td>45-52</td>
</tr>
<tr>
<td>Elite half-marathon runners</td>
<td>54</td>
</tr>
<tr>
<td>Canoeist</td>
<td>60</td>
</tr>
<tr>
<td>Elite rowers</td>
<td>60-90</td>
</tr>
<tr>
<td>Elite distance runners</td>
<td>79-88</td>
</tr>
<tr>
<td>Cross-country skiers</td>
<td>72-79</td>
</tr>
</tbody>
</table>
Fiber Type Composition
Sprinters vs. Endurance Athletes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Sprinter</th>
<th>Distance Runner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Large (>80kg)</td>
<td>Small (<50kg)</td>
</tr>
<tr>
<td>Explosive Power</td>
<td>Very high</td>
<td>High</td>
</tr>
<tr>
<td>Aerobic capacity</td>
<td>Unimportant</td>
<td>Important</td>
</tr>
<tr>
<td>Fatigue resistance</td>
<td>Unimportant</td>
<td>Crucial</td>
</tr>
<tr>
<td>Muscularity</td>
<td>Essential</td>
<td>Disadvantage</td>
</tr>
<tr>
<td>Body type</td>
<td>Mesomorphic</td>
<td>Ectomorphic</td>
</tr>
<tr>
<td>Muscle fiber compositions</td>
<td>60% Type II</td>
<td>60% Type I</td>
</tr>
</tbody>
</table>

Training

• Purpose:
 – General tiredness (Taber's)
 – Reduction of force generating capability of muscle
• Develop muscle fiber types by training at different intensities.
• Muscle recruitment based upon:
 – related to intensity of exercise
 – Long slow distance: Type I
 – High intensity: Type II
 – Muscles are recruited based upon information received by the CNS
 – Cardiostat: control based upon O₂ supply to the heart or brain
 – Glycostat: control based upon blood glucose (protect brain?)
 – Thermostat: control based upon heat accumulation
• Protect the body from harming itself
 – Central fatigue
 – Neurotransmitters within brain change signals being sent to muscles.
 – Is muscle recruitment influenced by a perception of how much more work can be done?

“Only the fast and strong die young”

• Endurance athletes tend to outlive sprinters.
 – Health benefits from endurance exercise?
 – Related to muscle fiber type?
 • Fiber type influences chosen level of physical activity?
 • People with more Type II muscle fibers may be more prone to developing hypertension, diabetes and obesity (Bassett, 1994).
 • People with more Type I fibers have greater levels of blood HDL-cholesterol (Tikkeanen et al., 1991).

Summary

• Muscle Structure
 – Gross to cell level
 – Muscle fiber type
• Muscle Function
 – Generate force
 • Sliding filament theory
• Muscle Performance
 – Length tension
 – Force velocity
 – Angle of attachment
 – Fatigue
 – Training