Manipulate[
 Graphics3D[
 Frame,
 {Thick, Red, Line @ Append[Line, s @ (p + (s, -s, 0))]},
 pov1 = s @ (p + (s, 3)),
 ViewPoint = (0, 0, 5),
 PlotRange = {{-6, 6}, {-6, 6}, {-6, 6}, {0, 0}, {0, 0}},
 Initialization : = {
 Global constants
 r = 1.0,
 pl = .5; (* plot range *)
 s = pl; (* half side of projection plane *)
 spt = (0, 0, r, r);
 spt = (0, 0, -r, -r);
 f = 16; (* facet size *)
 ps = pl; (* point size *)
 },
 pov1 = PolyLine @ {(-s, -s, -s), (-s, s, s), (-s, s, -s), (-s, -s, s),
 (s, -s, -s), (s, s, s), (s, s, -s), (s, -s, s)};
 (* functions *)
 sproject @ Point @ p onto plane@ = (p[[1]][[1]], p[[2]][[2]], -s);
 (* length of projection line *)
 plen @ p = Norm @ p - spt;
 (* angle between axial and projection line *)
 @ p = ArcTan @ Cross @ p / plen @ p; /*
 Projection Point on the Plane
 Use cosine law to solve for s, which in this case corresponds to the
distance s - spt.
 c^2 = a^2 - b^2 - 2ab Cos[alpha]

 Consider triangle spt - s - p. The angles at spt and s are both s.
 Then the angle of the segment in Pi - 2b. Let the segment length be c.
 Cosines:
 c^2 = a^2 - 2 a c Cos[alpha]
 = 2 s^2 - 2 s r Cos[alpha]
 = 2 s^2 - 2 s r Cos[Pi - 2b]
 c = Sqrt[2] s Sqrt[1 - Cos[Pi - 2b]]
 };
 (* length of segment *)
 slen @ p = Sqrt[1 - Cos[Pi - 2b] @ p];
 (* a vector *)
 v @ p = 1 (p @ pt / plen @ p @ (p @ pt @ spt));
 (* projection cone sphere *)
 @ p = Sqrt @ pt // !
];
 Graphics3D: Points and Lines
 ass = {Red, Thick, Line @ {{-2, 0, 0}, {-2, 0, 2}},
 Line @ {{0, 0, 0}, {0, 0, 2}},
 Line @ {{0, 0, -2}, {0, 0, 0}}};
 spherept = Point @ spt; Sphere @ spt; Sphere; Sphere;
 *sphere = Line @ {{-pl, pl}, (0, pl, -r), (0, pl, r)};
 Graphics3D: Points and Lines Functions
 (* a disk around the projection point on the plane *)
 @ p = (LightGray,Opacity .75,Cylinder @ pt @ pt @ pt @ pt + (0, 0, .0, .01));
 *sphere pt = {Red, PointSize pt, Point @ sphere @ pt}];
 v @ pov1 = {Black, Thick, Arrowheads @ .02, Arrow @ sphere @ pt @ pt}];
 (* CONNECTED GRAPHICS PRIMITIVES *)
 Frame : = {
 Opacity .75, Spheres @ {0, 0, 0}, color},
 Point @ {0, 0, 0},
 spt, color,
 crosspt, xcrosspt,
 projection point
];
 Initialization : = {
 Text @ Style @ "Stereo" @ Bold, Sphere @ {.05, .05, .2}],
 Text @ Style @ "", Bold, hvh, pov1 @ pt @ {.2, .2, .2, .2}];
 Text @ Style @ "", Bold, hvh, @ pt @ pt @ {.2, .2, .2}]}
]
}