15. (i) By noting the unit tangent (in the counterclockwise direction) to an origin centred circle can be written as $\xi = i(z/|z|)$, show that formula (23) for the curvature of the image of such a circle can be written as

$$\kappa = \frac{1 + \Re \left(\frac{zf''}{f'} \right)}{|zf'|}$$

Substitute $i(z/|z|)$ for ξ.
Substitute $\frac{1}{z}$ for k, because the equation for the circle can be written $z = r e^{i\theta}$.

Let f be understood to be $f(z)$.

$$\kappa = \frac{1}{|f'(p)|} \left(\Im \left(\frac{f''(p) \xi}{f'(p)} \right) + \kappa \right) \quad (23)$$

(ii) What should this formula yield if $f(z) = \log z$? Check that it does.

$\log z$ sends circles to vertical lines. Since the circle is origin-centred, $\log z$ should send the circle to the y axis. Then $\kappa = 0$.

$$f' = (\log z)' = \frac{1}{z}$$

$$f'' = -z$$

$$\kappa = \frac{1 + \Re \left(\frac{zf''}{f'} \right)}{|zf'|} = \frac{1 + \Re \left(\frac{f''(p) \xi}{f'(p)} \right)}{|zf'|} = \frac{1 + \Re \left(\frac{-z}{f'(p)} \right)}{|zf'|} = 0$$
(iii) What should this formula yield if \(f(z) = z^m \)? Check that it does. What is the significance of the value of \(\kappa \) when \(m \) is negative? [Hint: Which way does the velocity complex number of the image rotate as \(z \) travels counterclockwise around the original circle?]

The absolute value of \(z \)

\[
|z|
\]

\[
f'(z) = (z^m)' = m z
\]

\[
f''(z) = m(m - 1)
\]

\[
\kappa = \frac{1 + \text{Re} \left[\frac{z(m-1)z^{m-1}}{mz^{m-1}} \right]}{|zmz^{m-1}|}
\]

\[
= \frac{1 + \text{Re} \left[\frac{(m-1)z^{m-1}}{z^{m-1}} \right]}{|mz^m|}
\]

\[
= \frac{1 + \text{Re}(m-1)}{|mz^m|} = \frac{1 + m - 1}{|mz^m|} = \frac{m}{|m| |z|^m}
\]

\[
= \text{sign}(m)
\]

\[
|z|
\]

The formula results in

\[
|z|
\]

What is the significance of the value of \(\kappa \) when \(m \) is negative? [Hint: Which way does the velocity complex number of the image rotate as \(z \) travels counterclockwise around the original circle?]

We consulted chapter 1, §II, 2 “Moving Particle Argument” (pp. 10-12) for the following. Let \(z = \)
We see that when $m > 0$, V rotates mw by $\pi/2$ in the counterclockwise direction, so it is tangent to the image circle. As z travels in the counterclockwise direction, V must also rotate in the counterclockwise direction (Figure 1).

To illustrate the case when $m < 0$, let $n = -m$, i.e. n is a positive number, so $V = imr$.

Figure 1 (a) shows a circle of radius .8 and a gray, dashed ray pointing to .8. This same arrow under f is shown in (b). Under $f(z) = zr$.

r
\(f(z) = z^5 \)