Consider the mapping \(f(z) = z^4 \) illustrated above. On the left is a particle \(p \) travelling upwards along a segment of the line \(x = 1 \), while the right is the image path traced by \(f(p) \).

(i) Copy this diagram, and by considering the length and angle of \(p \) as it continues on its upward journey, sketch the continuation of the image path. See Figure 1.

As \(p \) continues upward, the angle \(\theta \) between the ray to \(p \) and the y axis increases and approaches \(\pi/2 \) as \(\text{Im}[p] \) goes to infinity. If we write \(z^4 = r^4 e^{i4\theta} \), we see that the image of \(p \) makes one revolution around the origin between \(\theta = 0 \) and \(\pi/2 \), because \(4(\pi/2) = 2\pi \).

Then if we write \(z^4 = (1 + iy)^4 \), we see that as \(\text{Im}[p] \) goes to \(\infty \), \(\text{Re}[\tilde{p}] \) goes to \(\infty \) and \(\text{Im}[\tilde{p}] \) goes to \(4\infty^3 \).

\[
\lim_{\text{Im}[p] \to \infty} (z^4) = (1 + i\infty)^4 = (1 + 2i\infty - \infty^2)^2 \rightarrow \infty^4 - 4\infty^3 i
\]

By writing \(z^4 = u + iv = (x^4 - 6x^2y^2 + y^4) + i(4x^3y - 4xy^3) \), we also see that the path of \(p \) crosses the y axis when \((x^4 - 6x^2y^2 + y^4) = 0 \), so \(1 - 6y^2 + y^4 = 0 \), and

\[
y^2 = \frac{6 \pm \sqrt{36 - 4}}{2} = \frac{6 \pm \sqrt{32}}{2} = \frac{6 \pm 4\sqrt{2}}{2} = 3 \pm 2\sqrt{2}
\]

Then \(y = \pm\sqrt{3 \pm 2\sqrt{2}} \).

This would lead to four values of \(z^4 \). Since we are interested only in the upward path of \(p \) and the image path \(\tilde{p} \) beginning at 1 and looping up and then downward (curving positively, counterclockwise) in Figure 1, we choose \(y = \sqrt{3 - 2\sqrt{2}} \), which is \(\text{Im}[p] \) when \(\theta = \pi/8 \) and \(\tilde{p} = 1.37258i \) (at A), and we choose \(y = \sqrt{3 + 2\sqrt{2}} \), which is \(\text{Im}[p] \) when \(\theta = 3\pi/8 \) and \(\tilde{p} = -46.6274i \) (See red dots in Figure 1).

Figure 1 shows the path of the image of \(p \) curving in a positive direction down with acceleration towards the origin, but the path goes to powers of infinity on both the x and y axes. If we were to take the path of \(p \) from \(\text{Im}[p] = -\infty \) to \(\infty \), or \(\theta = -\pi/2 \) to \(\pi/2 \), then we could see that it is possible for the image of \(p \) to make two full loops around the origin. As it is, we see only one partial loop. In Figure 2 b, we see two half loops.

(ii) Show that \(A = i \sec^4(\pi/8) \).

The following are true at any point \(z = x + iy \). See Figures 2a and 2b.

\[
x = r \cos \theta, \quad y = r \sin \theta
\]
\[r^2 = 1^2 - r^2 \sin^2 \theta \]
\[r^2 + r^2 \sin^2 \theta = 1 \]
\[r^2 \left(1 + \sin^2 \theta\right) = 1 \]
\[r^2 = \frac{1}{1 + \sin^2 \theta} \]

\[r = \pm \frac{1}{\sqrt{1 - \sin^2 \theta}} = \sec \theta \quad \text{[trig identity]} \quad (1) \]

Let \(z = re^{i\theta} \). Then
by taking the 4th power
\[A = z^4 = r^4 e^{4i\theta} \quad (2) \]
by substitution
\[A = \sec^4(\theta) e^{i\text{arg}(A)} \quad (3) \]
by construction, \(\text{arg}(A) = \pi/2 \)
\[A = \sec^4(\theta) e^{i(\pi/2)} \quad (4) \]
Set \(\text{arg}(z^4) \) in (2) equal to \(\text{arg}(\sec^4(\theta) e^{i(\pi/2)}) \) in (4).
\[4\theta = \pi/2 \quad \Rightarrow \quad \theta = \pi/8 \]

Since \(\text{arg}(A) = \pi/2 \) and \(e^{i(\pi/2)} = i \), \(A = i \sec^4(\pi/8) \).

Figure 1. Continuation of \(z^4 \) on \(x = 1 \)
from \(\text{Im}[p] < \sqrt{3 - 2 \sqrt{2}} \) to \(\text{Im}[p] > \sqrt{3 + 2 \sqrt{2}} \).
(iii) Find and mark on your picture the two positions (call them b_1 and b_2) of p that map to the self-intersection point B of the image path.

$z^4 = u$ because $vi = 0$

Let $z = x + iy$.

$$u = \text{Re}[(x + iy)^4] = x^4 - 6x^2y^2 + y^4$$

$$v = \text{Im}[(x + iy)^4] = 4x^3y - 4xy^3 = 0 \implies y = \pm 1, \text{ because } x = 1$$

The two points must be $1\mp i$ (Figure 2a).
\[b_1 = 1 + i \]
\[b_2 = 1 - i \]
\[B = (1 \pm i)^4 = -4 \]

This value can also be obtained by substituting ±1 into the formula for u.

(iv) Assuming the result \(f'(z) = 4 \, z^3 \), find the twist at \(b_1 \) and also at \(b_2 \).

We can see from Figure 2a, that \(\theta \) at \(b_1 \) is \(\pi/4 \) (or we could calculate it from \(\arctan(1) = \pi/4 \)).

The twist is \(\arg(f(z)) = \arg(4 \mid z \mid e^{i3\theta}) = 3\theta = \pm3\pi/4 \).

(v) Using the previous part, show that (as indicated at B) the image path cuts itself at right angles.

Since \(z^4 \) is analytic and conformal, the twist and the argument of the tangent are the same: \(\arg(z^4) \) at \(z = (1 \pm i) \). The tangents in this case have the same angles as the twist, \(\pm3\pi/4 \). Angle \(-3\pi/4\) is equivalent to \(5\pi/4 \). Then

\[5\pi/4 - 3\pi/4 = \pi/2, \text{ which is a right angle.} \]

Other observations not bearing directly on the questions.

Figure 3 plots \(\epsilon \) vectors emanating from B at tangent angles. Multiplying both \(\epsilon \) tangents by the amplitwist illustrates that \(z^4 \) is conformal.
Figure 3. Amplitwist of z^4 on $x = 1$