Unit 2 – Problem Solving, Reasoning and Mathematical Modeling
Section C – Linear and Exponential Equations
Topics: Linear, exponential and log functions.

Linear Equation:
- All linear equations have the form \(y = mx + b \)
- The letter \(m \) is the slope of the line, \(\frac{\text{rise}}{\text{run}} = \frac{\text{change in vertical}}{\text{change in horizontal}} \). It can be positive, negative or zero. It can also be very large or very small.
- The letters \(x \) and \(y \) are variables, meaning they vary or change along the line. At least one of them must be nonzero. Together they represent the ordered pairs \((x, y)\).
- The letter \(b \) represents the \(y \) (or horizontal) intercept, this is where the line crosses the horizontal axis.

The Disguises of a Linear Equation:
- The linear equation need not be in the form \(y = mx + b \) to be linear.
- Recall that to be a line it has to have an \(x \) or a \(y \) (not necessarily both) and they both need to only have a power of 1. If there is a squared term it is not a line (in other words, \(y = x^2 + 2 \) is not a line).
- Which of these are equations of lines?
 - \(2x + y = 7 \)
 - \(2y = 8 \)
 - \(3x – 6 = y \)
- If there is no \(x \) in the equation, the line is of the form \(y = b \). It is horizontal.
- If there is no \(y \) in the equation, the line is of the form \(x = b \). It is vertical (not a function).
- Every other line will have either a positive or negative slope \((m) \).

The Slope of a Line:
- \(m \), the slope of the line can be positive or negative.
- It is a measure of \(\frac{\text{rise}}{\text{run}} = \frac{\text{vertical change}}{\text{horizontal change}} = \frac{\text{change in } y}{\text{change in } x} = \frac{\Delta y}{\Delta x} \).
- What is so special about the slope of vertical and horizontal lines?
- Let's find the slope of the line between two points \((x_1, y_1)\) and \((x_2, y_2)\).
- \(m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{y_1 - y_2}{x_2 - x_1} \)
- Find the slope of the line through \((a, 3a+1)\) and \((a+h, 3(a+h)+1)\).
 - \((a, 3a+1)\) and \((a+h, 3a+3h+1)\)
 - \(m = \frac{\Delta y}{\Delta x} = \frac{3a+1-(3a+3h+1)}{a-(a+h)} = \frac{-3h}{-h} = 3 \)
Finding the Equation of a Line:
- If you have two points or one point and the slope you can find the equation of a line.
- **Find the equation of the line through the points (1,2) and (4,8)**

 \[
 m = \frac{8 - 2}{4 - 1} = \frac{6}{3} = 2
 \]

 \[y - 2 = 2(x - 1) \Rightarrow y = 2x\]

Determining Linear Relationships:
- There are several ways to determine a relationship is linear
 - The graph is a line
 - The equation is given and it is linear in form
 - You are told something increases (or decreases) by a constant or fixed amount
 - The change in \(y \) is proportional to the change in \(x \) (i.e. \(\Delta y = m \cdot \Delta x \)).

Rules for Exponents:

\[
\begin{align*}
 b^x b^y &= b^{x+y} \\
 (b^x)^y &= b^{xy} \\
 b^{-x} &= \frac{1}{b^x}
\end{align*}
\]

Form of the Exponential Function:
- \(y = kb^t \)
- Variables are \(y \) and \(t \), \(y \) depends on \(t \).
- \(b \) is the base (\(b > 0, \ b \neq 1 \)).
- \(k \) is the initial quantity (when \(t = 0 \)).
- A commonly used base is \(e = 2.7182818284… \)

Graphs of Exponentials:
- \(y = kb^t \)
 - If the base is greater than 1, you have exponential growth.
 - If the base is less than 1, you have exponential decay.
 - If \(k > 0 \), the function will always be positive. It will tend to 0 (for decay) and infinity (for growth).
 - If \(k < 0 \), the function will always be negative (it is flipped upside down).
 - The y intercept is \(k \).

Half Life andDoubling Time:
- So \(b \) is the base value in the equation \(y(t) = kb^t \), and the rate of growth (or decay) is sometimes given as \(r \).
- Note that \(r \) is usually given as a percentage, and you must convert it to decimal before using
 \(b = 1 + r, \ r = b - 1 \)

 \(r \) can be negative or positive, but \(b \) must be positive and not equal to 1
• We can also talk about the exponential form of the equation as $y(t) = P_0 e^{kt}$. Here k is called the exponential growth rate. Be careful of the difference between this k and the plain growth rate (r) given above.

• **Half life** is the amount of time it takes for a substance to decay to half of its original quantity. It represents exponential decay. The half life and decay rate are obviously related:

$$\frac{1}{2}k = k \cdot b^T \implies T = \frac{\ln(0.5)}{\ln b} \quad \text{or} \quad b = \left(\frac{1}{2}\right)^{1/T}$$

• **Doubling time** is the amount of time it takes for a substance to double its original quantity. It represents exponential growth. The doubling time and growth rate are obviously related:

$$2k = k \cdot b^T \implies T = \frac{\ln(2)}{\ln b} \quad \text{or} \quad b = 2^{1/T}$$

Log Functions:

• We want to undo the exponential function $b^y = x$

• This is true iff $y = \log_b x$

• y is the exponent, b is the base, and x is the argument

• So the log function is the inverse of the exponential function

• What are our conditions on x, and b?

Working with Logs (Changing forms):

• **Example.** $\log_{10} 1000 = 3 \quad 10^3 = 1000$

• **Example.** $\log_{10} \frac{1}{100} = ? \quad 10^y = \frac{1}{10^2}, \quad y = -2$

• **Example.** $\log_{0.5} 16 = y \quad 0.5^y = 16, \quad y = -4$

• **Example.** Find $\ln e^{-5} = y$

 $e^y = e^{-5}$

 $y = -5$

• **Example.** Convert $e^{-t} = 4000$ to log

 $\log_e 4000 = -t$

Special Log Bases:

• Log base e is natural log (written \ln)

• Log base 10 is common log (written \log)

• These will be the only two on your calculator. So if you need to calculate say, $\log_a 2$, you have to use the change of base formula $\log_b M = \frac{\log_a M}{\log_a b}$.

 $\log_4 2 = \frac{\ln 2}{\ln 4} = \frac{\log 2}{\log 4} = 0.5$

• **Example, page 369 number 74.** Find $\log_{5,3} 1700$

 $\log_{5,3} 1700 = \frac{\ln 1700}{\ln 5.3} \approx 4.46$