Section 6.3 – Elementary Row Operations and Determinants

Homework (pages 463-464) problems 1-19

Rules:

- **Theorem 1.** For an \(nxn \) matrix \(A \), \(\text{det}(A) = \text{det}(A^T) \)

- **Theorem 2.** If you interchange two rows (or columns) of an \(nxn \) matrix \(A \), it changes the determinant by a factor of \(-1\).

 - Example. If \(A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \) and \(B = \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix} \) find \(\text{det}(A) \) and \(\text{det}(B) \)

 Solution: \(\text{det}(A) = 4 - 6 = -2 \). \(\text{det}(B) = 6 - 4 = 2 \)

- **Theorem 3.** If you multiply a row (or column) by a scalar \(c \), it changes the determinant by a factor of \(c \).

 - Example. If \(A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \) and \(B = \begin{bmatrix} 2 & 6 \\ 2 & 4 \end{bmatrix} \) find \(\text{det}(A) \) and \(\text{det}(B) \)

 Solution: \(\text{det}(A) = -2 \). \(\text{det}(B) = 8 - 12 = -4 = 2(-2) \)

 - This would imply that if you multiply an \(nxn \) matrix by a scalar \(c \), then \(\text{det}(cA) = c^n \text{det}(A) \)

- **Theorem 4.** If you add the \(s \)th row (or column) of matrices \(B \) and \(C \) (who are equivalent except for the row \(s \)) to yield a new matrix \(A \), then \(\text{det}(A) = \text{det}(B) + \text{det}(C) \).

 - Example. If \(B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) and \(C = \begin{bmatrix} 3 & 1 \\ 3 & 4 \end{bmatrix} \) and \(A = \begin{bmatrix} 4 & 3 \\ 3 & 4 \end{bmatrix} \) find the determinants

 Solution: \(\text{det}(B) = -2 \), \(\text{det}(C) = 9 \). \(\text{det}(A) = 7 = \text{det}(B) + \text{det}(C) \)

- **Theorem 5.** If a row (or column) is a multiple of another row (or column) then the determinant is 0.

 - Example. If \(A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \) find \(\text{det}(A) \)

 Solution: \(\text{det}(A) = 0 \)

- **Theorem 6.** The determinant is not changed if a multiple of one row (or column) is added to another.

 - Example. If \(B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) and \(A = \begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix} \) and \(C = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix} \) find the determinants

 Solution: \(\text{det}(B) = -2 \) \(\text{det}(A) = -2 \) but \(\text{det}(C) = 2 \)… why?