Section 4.5 – Eigenvectors and Eigenspaces

Homework (page 314) problems 1-17

Geometric Multiplicity:

- Find the eigenvectors and eigenvalues for the matrix \(A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \).

Solution: \(|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 1 & 0 \\ 0 & 1 - \lambda & 1 \\ 0 & 0 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^3 \). So \(\lambda = 1 \) is an eigenvalue (multiplicity 3).

The eigenvector corresponding to it is \(A - I = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow x_1 = 0, x_3 = 0 \). \(\vec{x} = a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \).

- For an \(nxn \) matrix \(A \), if \(\lambda \) is an eigenvalue, then
 - The null space of \(A - \lambda I \) is denoted by \(E_\lambda \) and is called the eigenspace of \(\lambda \).
 - The dimension of \(E_\lambda \) is called the geometric multiplicity of \(\lambda \).

So in the example above, \(E_1 = \left\{ \vec{x} : \vec{x} = a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, a \neq 0 \right\} \), and its dimension is 1, so \(\lambda = 1 \) has geometric multiplicity of 1, and algebraic multiplicity of 3.

- When an \(nxn \) matrix has a eigenvalue whose geometric multiplicity is less than the algebraic multiplicity, then it is called a defective matrix. In essence, it will not have a set of \(n \) linearly independent eigenvectors.

- For a set of \(k \) eigenvectors corresponding to \(k \) distinct eigenvalues of an \(nxn \) matrix \(A \), then these eigenvectors form a linearly independent set (Theorem 15).

- For an \(nxn \) matrix, if it has \(n \) distinct eigenvalues, then it has a set of \(n \) linearly independent eigenvectors (Corollary).
Exercise 12. Find the eigenvectors/values for $A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$. Is A defective?

Solution: $|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 1 & -1 \\ 0 & 2 - \lambda & -1 \\ 0 & 0 & 1 - \lambda \end{vmatrix} = (1 - \lambda)(2 - \lambda)(1 - \lambda)$

So $\lambda_1 = 1$ (algebraic multiplicity 2), $\lambda_2 = 2$ (algebraic multiplicity 1)

For 1:

$$\begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$\Rightarrow x_2 = x_3, \quad \tilde{x} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ (geom. multiplicity 2)

For 2:

$$\begin{bmatrix} -1 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \Rightarrow x_3 = 0, \quad x_1 = x_2; \quad \tilde{x} = x_2 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$ (geom. mult. 1)

This is not a defective matrix.