Section 3.2 – Vector Space Properties of \mathbb{R}^n

Homework (pages 174-175) problems 1-18

Properties in \mathbb{R}^n:

- Recall a vector in n-dimensional space will have the form $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$.
- The following hold for n-dimensional vector spaces (Theorem 1):
 - Closure under addition and scalar multiplication
 - Commutative and associative properties of addition
 - Additive identity, namely $\vec{0}$
 - Additive inverse exists, namely $-\vec{x}$
 - Properties of scalar multiplication, i.e.
 \[
 a(b\vec{x}) = (ab)\vec{x}, \quad a(\vec{x} + \vec{y}) = a\vec{x} + ay, \quad (a + b)\vec{x} = a\vec{x} + b\vec{x}, \quad 1\vec{x} = \vec{x}
 \]
- A subset that satisfies all the properties of Theorem 1 is called a subspace of \mathbb{R}^n.
- A subset, W, of \mathbb{R}^n is a subspace of \mathbb{R}^n iff
 - It contains the zero vector
 - For any two vectors in W, their sum is in W
 - For any vector \vec{x} in W and any scalar a, $a\vec{x} \in W$
- Exercise 2. Determine if $W = \{ \vec{x} | x_1 - x_2 = 2 \}$ is a subspace of \mathbb{R}^2.

Solution:

The vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ does not satisfy $x_1 - x_2 = 2$ (so it is not a subspace)

Also, $\vec{x} + \vec{y}$ is not in the space. Given $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$, with $x_1 = 2 + x_2$, $y_1 = 2 + y_2$,

$\vec{x} + \vec{y} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \end{bmatrix}$. But from above, $x_1 + y_1 = 4 + 2x_2 + 2y_2 \neq 2 + (x_2 + y_2)$

Also, $a\vec{x}$ is not in the space. Given $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ with $x_1 = 2 + x_2$, $a\vec{x} = \begin{bmatrix} ax_1 \\ ax_2 \end{bmatrix}$,

and from above, $ax_1 = 2a + ax_2 = a(2 + x_2) \neq 2 + ax_2$.

So for all these reasons (only one needs to fail) W is not a subspace of \mathbb{R}^2.
• Determine if \(W = \{ \vec{x} \mid \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, x_1 = x_2 - x_3, \ x_2, x_3 \in \mathbb{R} \} \) is a subspace of \(\mathbb{R}^3 \).

Solution:

The vector \(\vec{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \) satisfies \(x_1 = x_2 - x_3 \)

For any vectors \(\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \) and \(\vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \) with \(x_1 = x_2 - x_3 \) and \(y_1 = y_2 - y_3 \),

\[\vec{x} + \vec{y} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{bmatrix}. \] From above, \(x_1 + y_1 = (x_2 - x_3) + (y_2 - y_3) = (x_2 + y_2) - (x_3 + y_3) \)

For any scalar \(a \), \(a\vec{x} \) is in the space. Given \(\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \) with \(x_1 = x_2 - x_3 \), \(a\vec{x} = \begin{bmatrix} ax_1 \\ ax_2 \\ ax_3 \end{bmatrix} \),

and from above, \(ax_1 = ax_2 - ax_3 = a(x_2 - x_3) \).

Therefore, \(W \) is a subspace, and it represents the plane with equation \(x - y + z = 0 \).