Section 1.9 – Matrix Inverses and Their Properties
Homework (pages 102-103) problems 1-8, 13-28

The Matrix Inverse:
• The inverse of an \(nxn \) matrix \(A \), denoted \(A^{-1} \), satisfies the system \(A^{-1}A = AA^{-1} = I \) (where \(I \) is the identity matrix).
• If we can find an inverse of \(A \) (i.e. if the inverse exists) then we say that \(A \) is invertible.
• \(A \) has an inverse if and only if \(A \) is nonsingular (recall nonsingular iff linearly independent set, and a row of 0’s implies a linearly dependent set).

Finding the Inverse:
• To calculate the inverse of a nonsingular \(nxn \) matrix, proceed as follows:
 o Form the matrix \([A | I]\)
 o Use elementary row operations to transform the above into \([I | B]\)
 o The resulting matrix \(B = A^{-1} \)
• Example: Find the inverse of \(A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)
Solution:
\[
\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix}
\]
Therefore, \(A^{-1} = \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix} \)

How can we check this?
• What can go wrong? Let’s try to find the inverse of \(A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \)
Solution:
\[
\begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0.33 \\ 1 & -0.33 \end{bmatrix}
\]
We can’t form the identity matrix, therefore \(A \) does not have an inverse. It is not invertible, and with closer inspection we can see it is singular.

Properties of Matrix Inverses:
• For two \(nxn \) matrices \(A \) and \(B \), each of which has an inverse…
 o \(A^{-1} \) has an inverse, and \((A^{-1})^{-1} = A \)
 o \(AB \) has an inverse, and \((AB)^{-1} = B^{-1}A^{-1} \)
 o If \(k \) is a nonzero scalar, then \(kA \) has an inverse and \((kA)^{-1} = (1/k)A^{-1} \)
 o \(A^T \) has an inverse, and \((A^T)^{-1} = (A^{-1})^T \)
• Exercise: For \(A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) and \(B = \begin{bmatrix} 2 & 3 \\ 6 & 7 \end{bmatrix} \), find \(AB, (AB)^{-1}, A^{-1}, B^{-1}, \) and \(B^{-1}A^{-1} \)

\textbf{Using Inverses to Solve Systems of Linear Equations:}

• If we have the system \(Ax = \bar{b} \), the a solution exists if \(A \) is invertible, and it would be \(\bar{x} = A^{-1}\bar{b} \)

• Exercise: If we know \(A = \begin{pmatrix} 7 & 4 \\ 5 & 3 \end{pmatrix} \) has an inverse \(A^{-1} = \begin{pmatrix} 3 & -4 \\ -5 & 7 \end{pmatrix} \), then what is the solution to the system given by \(7x_1 + 4x_2 = 5, \ 5x_1 + 3x_2 = 2 \) ?

\textbf{Solution:}

\[A\bar{x} = \bar{b} \Rightarrow \begin{pmatrix} 7 & 4 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \end{pmatrix} \Rightarrow \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 3 & -4 \\ -5 & 7 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} = \begin{pmatrix} 7 \\ -11 \end{pmatrix} \]

\textbf{Hilbert Matrix:}

• The \(nxn \) Hilbert matrix is the matrix whose \(ij \)th entry is \(1/(i + j - 1) \).

• The 3x3 Hilbert matrix is

\[\begin{pmatrix} 1 & 1/2 & 1/3 \\ 1/2 & 1/3 & 1/4 \\ 1/3 & 1/4 & 1/5 \end{pmatrix} \]

• The above matrix has an inverse given by

\[\begin{pmatrix} 9 & -36 & 30 \\ -36 & 192 & -180 \\ 30 & -180 & 180 \end{pmatrix} \]

• Note the size of the numbers in the matrix.

• If small changes in \(\bar{b} \) in the equation \(A\bar{x} = \bar{b} \) can lead to large changes in the solution \(\bar{x} \) then the matrix \(A \) is called \textbf{ill-conditioned}.