1. Describe what is meant by a *tangent line*, and sketch an example of one

2. Find the limit \(\lim_{x \to -4} \frac{x^2 - 16}{x + 4} \)

3. Find the limit \(\lim_{x \to 0} \frac{\sqrt{x + 25} - 5}{x} \)

4. Find the limit \(\lim_{x \to 0} \frac{x^2 - 2x}{x^2 (x - 1)} \) and \(\lim_{x \to 0} \frac{x^2 - 2x}{x^2 (x - 1)} \)

5. Evaluate \(\lim_{x \to 3} \frac{x^2 - 9}{x - 3} \) by evaluating the limit from the right and left

6. Prove \(\lim_{x \to 3} (4x - 2) = 10 \) using the epsilon-delta definition of a limit

7. Sketch a function that has at least one removable discontinuity, and at least one infinite discontinuity and at least one jump discontinuity. Be sure to label the discontinuities

8. Prove that \(f(x) = x - \tan(x) \) has a root between \(x = 7.5 \) and 7.8

9. Find all asymptotes (horizontal and vertical) for \(f(x) = \frac{3x^2 + 2x - 5}{2x^2 - 4} \)

10. Find the slope of the tangent to the curve \(y = \frac{1}{x} + 1 \) at any point using the limit definition of derivative