Section 3.6 – Hyperbolic Functions

Definitions:

- Recall the trig functions are related to the unit circle $x^2 + y^2 = 1$…

- In a similar way, hyperbolic functions are related to the hyperbolic function $x^2 - y^2 = 1$…

- They can be expressed in terms of linear combinations of exponential growth and decay.

- $\sinh x = \frac{e^x - e^{-x}}{2}$
 $\cosh x = \frac{e^x + e^{-x}}{2}$

- For the regular trig functions, sine and cosine give rise to tangent, cotangent, secant and cosecant.

- In a similar way, hyperbolic sine and hyperbolic cosine give rise to…

\[
\begin{align*}
\tanh x &= \frac{\sinh x}{\cosh x} \\
\csch x &= \frac{1}{\sinh x} \\
\sech x &= \frac{1}{\cosh x} \\
\coth x &= \frac{\cosh x}{\sinh x}
\end{align*}
\]
Graphs of Hyperbolic Sine and Cosine:

- \(\sinh x = \frac{e^x - e^{-x}}{2} \)

- \(\cosh x = \frac{e^x + e^{-x}}{2} \)
Properties of Hyperbolic Functions:

- \(\sinh(-x) = \frac{e^{-x} - e^{-(x)}}{2} = \frac{-e^x - e^{-x}}{2} = -\sinh x \)

- \(\cosh(-x) = \frac{e^{-x} + e^{-(x)}}{2} = \frac{e^x + e^{-x}}{2} = \cosh x \)

- Q: From our definitions of **even** and **odd**, how can we classify \(\sinh \) and \(\cosh \)?
 A:

- Q: What can we then say about their symmetry?
 A:

- \(\cosh^2 x - \sinh^2 x = 1 \)

- And the last two properties are:
 \(\sinh(x + y) = \sinh x \cosh y + \cosh x \sinh y \)
 \(\cosh(x + y) = \cosh x \cosh y + \sinh x \sinh y \)

Derivatives:

- \(\frac{d}{dx} \sinh x = \frac{d}{dx} \left(\frac{e^x - e^{-x}}{2} \right) = \frac{e^x + e^{-x}}{2} = \cosh x \).
 The derivative of \(\sinh \) is \(\cosh \).

- \(\frac{d}{dx} \cosh x = \frac{d}{dx} \left(\frac{e^x + e^{-x}}{2} \right) = \frac{e^x - e^{-x}}{2} = \sinh x \).
 The derivative of \(\cosh \) is \(\sinh \).

- \(\frac{d}{dx} \tanh x = \frac{d}{dx} \left(\frac{\sinh x}{\cosh x} \right) = \frac{\cosh x(\cosh x) - \sinh x(\sinh x)}{\cosh^2 x} = \frac{1}{\cosh^2 x} = \text{sech}^2 x \)

- Q: Use your understanding of the chain rule and the property that \(\text{csch} x = 1/\sinh x \) to find \(\frac{d}{dx} \text{csch} x \).
 A:
Q: Use your understanding of the property \(\text{csch} \, x = \frac{2}{e^x - e^{-x}} \) to find \(\frac{d}{dx} \text{csch} \, x \).

A:

Q: Use your understanding of the chain rule and the property that \(\text{sech} \, x = \frac{1}{\cosh \, x} \) to find \(\frac{d}{dx} \text{sech} \, x \).

A:

Q: Use your understanding of the chain rule and the property that \(\coth \, x = \frac{\cosh \, x}{\sinh \, x} \) to find \(\frac{d}{dx} \coth \, x \).

A:

Inverse Hyperbolic Functions:

- There are functions that ‘undo’ the hyperbolic functions

 \[y = \sinh^{-1} x \iff \sinh y = x \]

 \[y = \cosh^{-1} x \iff \cosh y = x \quad y \geq 0 \]

 \[y = \tanh^{-1} x \iff \tanh y = x \]

- Because hyperbolic functions are related to exponentials, their inverses are related to logs

 \[\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1}) \quad x \in R \]

 \[\cosh^{-1} x = \ln(x + \sqrt{x^2 - 1}) \quad x \geq 1 \]

 \[\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1 + x}{1 - x} \right) \quad -1 < x < 1 \]
• Let’s try to see why the first equation works…
 We want to find the inverse of the function \(y = \sinh x \)
 As we usually proceed to find an inverse, we swap \(x \) and \(y \) and solve for \(y \)
 \[
 x = \sinh y = \frac{e^y - e^{-y}}{2}
 \]
 \[
 2x = e^y - e^{-y}
 \]
 \[
 2xe^y = e^{2y} - 1
 \]
 \[
 (e^y)^2 - 2x(e^y) - 1 = 0
 \]
 \[
 e^y = \frac{2x \pm \sqrt{4x^2 - 4(1)(-1)}}{2(1)} = x \pm \sqrt{x^2 + 1} \quad \text{by the quadratic formula.}
 \]
 So either \(e^y = x - \sqrt{x^2 + 1} \). But \(x - \sqrt{x^2 + 1} < 0 \) for all \(x \). This is not valid.
 or \(e^y = x + \sqrt{x^2 + 1} \Rightarrow y = \ln(x + \sqrt{x^2 + 1}) \)

• We can also differentiate any of the inverse trig functions, these formulas are in your book.