Section 3.3 – Derivative of Log and Exponential Functions

Derivative of the Exponential Function:

- Recall that \(e \) can be defined by the number so that \(\lim_{h \to 0} \frac{e^h - 1}{h} = 1 \).

- Using the definition of derivative, we find
 \[
 \frac{d}{dx}(e^x) = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = \lim_{h \to 0} \frac{e^x(e^h - 1)}{h} = e^x \lim_{h \to 0} \frac{e^h - 1}{h} = e^x(1) = e^x.
 \]

- The derivative of the Natural Exponential Function is itself
 \[
 \frac{d}{dx}(e^x) = e^x
 \]

Derivative of General Exponential:

- To differentiate \(f(x) = a^x \) we need to know three things…
 1. \(f(x) = a^x = (e^{\ln a})^x = e^{(\ln a)x} \)
 2. \(\frac{d}{dx} e^x = e^x \)
 3. The chain rule

- We then find that
 \[
 \frac{d}{dx} a^x = \frac{d}{dx} e^{(\ln a)x} = e^{(\ln a)x} [\ln a] = (e^{\ln a})^x \ln a = a^x \cdot \ln a
 \]

Derivative of the Log Function:

- The relationship between the log and exponential functions is: .
- To differentiate \(f(x) = \log_a x \) we need to know three things…
 1. The relationship of: \(\log_a x = y \Leftrightarrow a^y = x \)
 2. \(\frac{d}{dx} (a^y) = a^y \ln a \)
 3. Implicit differentiation

- If we use implicit differentiation on the equation \(a^y = x \) we find
 \[
 \frac{d}{dx} (a^y) = \frac{d}{dx} x
 \]
 \[a^y \cdot \ln a \cdot y' = 1\]
 \[y' = \frac{1}{a^y \cdot \ln a} = \frac{1}{x \cdot \ln a}\]

- Therefore \((\log_a x)' = \frac{1}{x \cdot \ln a} \).
Derivative of Natural Log Functions:

- From above, we have $(\log_a x)' = \frac{1}{x \cdot \ln a}$.

- For most practical purposes, we use the natural log, or a base of $a = e$. So we have $\frac{d}{dx} \ln x = \frac{1}{x}$

- So with the chain rule, we say: The derivative of the natural log of a function is one over that function times the derivative of that function.

Examples:

- Find the derivative of $y = \ln \left(\frac{x}{x+1} \right)$.
• Find the derivative of \(y = \frac{1 + \ln x}{1 + (\ln x)^2} \).

• Find the derivative and domain for \(f(x) = \frac{1}{1 + \ln x} \).