Section 3.2 – Inverse Functions and Logs

Inverse Relations:

- To find an inverse you are looking to 'undo' the process that was done with the original relation.

- For example, the inverse of the function \(f(x) = \frac{1}{x - 2} \) is the function \(g(x) = \frac{1}{x} + 2 \).

Notice that \(f(3) = 1 \), and \(g(1) = 3 \).

- Also notice in the previous example, we have the ordered pair \((3,1)\) for \(f(x) \) and the ordered pair \((1,3)\) for \(g(x) \). In fact, being able to interchange the first and second coordinates of each ordered pair in a relation is another way to recognize an inverse.

- To find an inverse relation for \(y = \text{relation of } x \), interchange the \(x \)'s and \(y \)'s in the equation and (if possible) solve for \(y \).

Example. Find the equation of the inverse of \(y = x^2 - 6x + 9 \).

- \(Q: \) Is the original problem a function? Does it pass the vertical line test? Is the inverse a function?

 \(A: \)

Inverse Functions and One-to-One:

- The concepts above hold for functions as well. You can find an inverse function by switching the order of all ordered pairs, or you can switch the \(x \)'s and \(y \)'s in the equation and solve.

- The notation for inverse functions is a little bit different, because for a function \(f(x) \), whose inverse is also a function, the notation for the inverse is \(f^{-1}(x) \).

- Note, this does NOT mean \(\frac{1}{f(x)} \), but \(f^{-1}(x) \).
• Notice in the problem given previously, \(f(x) = x^2 - 6x + 9 \) is a function. But the inverse, \(\pm \sqrt{x} + 3 \) is NOT a function.

• Q: How can you tell the inverse is not a function?
A: __.

• Recall that for \(y(x) \) to be a function, each \(x \) has only one \(y \).
• \(y(x) \) is ____________ if it is
 1. a function, and
 2. each \(y \) maps back to only one \(x \)

• For one-to-one, each \(x \) has only one \(y \), and each \(y \) has only one \(x \). It has to pass not only the vertical line test, but also a ____________.

• Q: Which of the following are functions? Which are one-to-one?

\[\begin{align*}
\text{a} & \quad \text{b} & \quad \text{c}
\end{align*} \]

A: __

• The following functions are always one-to-one:
 Linear, square roots
The following functions are not ever one-to-one:
 Quadratic, absolute value
• Example. Graph \(f(x) = \frac{5x - 3}{2x + 1} \), determine if it is 1-1, if so find the inverse

• Q: What is the relationship between the domain and ranges for functions and their inverses?
A: ________________________

• Since an inverse function ‘undoes’ the original function, if we compose the two [i.e. take \(f \circ f^{-1}(x) \) or \(f^{-1} \circ f(x) \)] we will get \(x \).

• Example. Show \(f(x) = \frac{x + 5}{4} \), \(f^{-1}(x) = 4x - 5 \) are inverses

Log Functions:

• Recall: \(b^y = x \) if and only if \(y = \log_b x \)
 \(y \) is the exponent, \(b \) is the base, and \(x \) is the argument

• **Special Log Bases:**
 - Log base \(e \) is \(\log_e \) (written \(\ln \))
 - Log base 10 is \(\log_{10} \) (written \(\log \))
• Log Rules:
 \[
 \begin{align*}
 \log_b b &= 1 \\
 \log_b 1 &= 0 \\
 \log_b b^p &= p \\
 \log_b(MN) &= \log_b M + \log_b N \\
 \log_b M^p &= p \log_b M \\
 \log_b(M/N) &= \log_b M - \log_b N \\
 b^{\log_b p} &= p
 \end{align*}
 \]

• Example. Express \(\log_a \sqrt[3]{a^6b^8} \) in terms of sums and differences

• Example, simplify \(2\log_5 x - \log_5 y - 3\log_5 z \)

Solving Exponential Equations:
• Equations with variables in the exponent are called ________________.
• If the base is the same on both sides of the equation, you can equate the exponents.

• Example. Solve \(3^{x+4x} = \frac{1}{27} \)

• More work comes when the base is not the same. You will then have to solve the equation using logs.
Example. Solve $2^x = 40$

Example. Solve $e^x - 6e^{-x} = 1$

Solving Log Equations:
- Often it is useful to change to exponential in form.

Example. Solve $\log_2 x = -3$

Example. Solve $\log_5 (8 - 7x) = 3$

Example. Solve $\log x - \log(x + 3) = -1$