Section 2.1 – Derivatives and Rates of Change

Recap:

- Let's look at the function \(f(x) = -x^2 + 2x + 3 \).

Q: What is the equation of the line through the points on the graph at \(x = 2 \) and \(x = 4 \)?
A:

Q: What about the equation between 2 and 3?
A:

Q: Can you predict the tangent line at \(x = 2 \)?
A:

The General Process:

- From an original starting point \((a, f(a)) \) we are looking at the slope of the line connecting it to another point a distance of \(h \) away from \(a \).

- What is the slope of this dashed line connecting \((a, f(a)) \) and \((a+h, f(a+h)) \)?

\[
\begin{align*}
\Delta y &= f(a+h) - f(a) \\
\Delta x &= (a+h) - a = h \\
slope &= \frac{\Delta y}{\Delta x} = \frac{f(a+h) - f(a)}{h}
\end{align*}
\]
• We want to let \(h \) tend to zero, so that the point \((a+h, f(a+h))\) collapses into \((a, f(a))\). So we take
\[
\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.
\]
• This is slope of the tangent line, also called the instantaneous rate of change of \(f(x) \) at \(x = a \).

Same Definition, Different Names:

• The formula given by \(\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \) has a few different names.

• The ____________ to the curve \(f(x) \) at the point \(a \).

• The ____________ of the function \(f(x) \) at the point \(a \).

• The ____________ of \(f(x) \) at the point \(a \).

• The ____________ of \(f(x) \) at the point \(a \).

• If \(f(x) \) represents distance at any time, then the above definition is the ____________ at the point \(a \). If we take the absolute value of this, it represents ____________.

Some Examples:

• *Find the slope of the tangent line to the parabola \(y = x^2 - 3x \) at the point \(x = -1 \).*
• Find an equation of the tangent line to the curve \(y = \sqrt{5x-4} \) at the point \(x = 4 \).

• Find the slope of the tangent to the curve \(y = \frac{1}{x-3} \) at any point \(a \).
Find the slope of the tangent to the curve \(y = 2\sqrt{x} \). This time we will leave it as \(x \) instead of \(a \).