Section 4.2 – Exponential Functions and Graphs

What Would You Rather Have...
• $1 million, or double your money every day for 31 days starting with 1 cent?

<table>
<thead>
<tr>
<th>Day</th>
<th>Cents</th>
<th>Day</th>
<th>Cents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>16</td>
<td>65536</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>17</td>
<td>131072</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>18</td>
<td>262144</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>19</td>
<td>524288</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>20</td>
<td>1048576</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>21</td>
<td>2097152</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>22</td>
<td>4194304</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>23</td>
<td>8388608</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>24</td>
<td>16777216</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>25</td>
<td>33554432</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>26</td>
<td>67108864</td>
</tr>
<tr>
<td>11</td>
<td>2048</td>
<td>27</td>
<td>134217728</td>
</tr>
<tr>
<td>12</td>
<td>4096</td>
<td>28</td>
<td>268435456</td>
</tr>
<tr>
<td>13</td>
<td>8192</td>
<td>29</td>
<td>536870912</td>
</tr>
<tr>
<td>14</td>
<td>16384</td>
<td>30</td>
<td>1073741824</td>
</tr>
<tr>
<td>15</td>
<td>32768</td>
<td>31</td>
<td>2147483648</td>
</tr>
</tbody>
</table>

• On day 31, you will have 2,147,483,648 cents, or $21,474,836.48
• How can we express this with an equation?
 \[\# \text{cents}(\text{day}) = 2^{\text{day}} \]
 \[2^{31} = 2,147,483,648 \]
• When do you surpass $1 million, or \(10^8 \) cents?
 From the chart of values above, you can see this happens between day 26 and day 27

Some Background:
• Evaluate
 \[3^7 \approx 31.54 \]
 \[3^{-\sqrt{15}} \approx 0.01419 \]
 \[3^{-\frac{1}{3}} \approx 1.49804 \]
• Example. Find \(\left(\frac{1}{e^3} \right)^2 \)
 \[\left(\frac{1}{e^3} \right)^2 = \frac{1}{e^6} \approx 2.48 \times 10^{-3} = 0.00248 \]

Form of the Exponential Function:
• \(y = kb^t \)
• Variables are \(y \) and \(t \), \(y \) depends on \(t \)
• \(b \) is the base (\(b > 0, b \neq 1 \))
• \(k \) is the initial quantity (when \(t = 0 \))
• A commonly used base is \(e = 2.7182818284… \)
Rules for Exponentials:

\[b^x b^y = b^{x+y} \]
\[(b^x)^y = b^{xy} \]
\[b^{-x} = \frac{1}{b^x} \]

Graphs of Exponentials:

- If the base is greater than 1, you have exponential growth
- If the base is less than 1, you have exponential decay
- If \(k > 0 \), the function will always be positive. It will tend to 0 (for decay) and infinity (for growth)
- If \(k < 0 \), the function will always be negative (it is flipped upside down)
- The \(y \) intercept is \(k \)

- If you have an equation that is exponential in form, but are adding or subtracting a constant
 \[y = k b^t + c \], this is a shift up (\(c > 0 \)) or down (\(c < 0 \)) by \(c \)
 \[y = k b^{(t+c)} \], this is a shift left (\(c < 0 \)) or right (\(c > 0 \)) by \(c \)

Example. Graph \(y = 3^{-x} \)

\[y = \left(\frac{1}{3}\right)^x \]
\(b = 1/3 \)
Exponential decay
\(k = 1 \)
Crosses at (0,1)

Example. Graph \(f(x) = 2 - e^{-x} \)

\[f(x) = 2 + (-1)\left(\frac{1}{e}\right)^x \]
This has a shift up of 2
\(k = -1 \) (flipped upside down)
and \(b = 1/e \approx 0.37 \)
Exponential Equations Arise When:
- You add the same percentage to a quantity each fixed time period
- You multiply a quantity by the same amount each fixed time period
- For the money example, we were adding 100% each day, or multiplying by 2

Another Example, Simple Interest:
- Suppose your savings account earns 1.25% interest per month, and you start with $250. Write an equation that represents this problem.

How can we make an equation out of this?

\[y(t) = 250(1.0125)^t \]

- Does this represent growth or decay? Growth
- How much do you earn in the first month? \(y(1) = 250(1.0125) - 250 \approx 3.13 \)

The Relationship between the Rate of Growth and \(b \):
- Sometimes exponential relationships are given as rate of growth problems
- Similar to above, the rate of growth of the equation is given as 1.25%
- So \(b \) is the base value in the equation \(y(t) = k \ b^t \), and \(r \) is the rate of growth (or decay)
- Note that \(r \) is usually given as a percentage, and you must convert it to decimal before using
- \(r = 1 + r, r = b - 1 \)
- \(r \) can be negative or positive, but \(b \) must be positive and not equal to 1
- In the double your money problem
 \(b = 2, \) and \(r = 100\%. \) \(r = 2 - 1 = 1 = 100\%. \) \(b = 1 + r = 2 \)

Example 1:
- Determine if the following set of data is exponential by taking divisions of successive \(y \) values

<table>
<thead>
<tr>
<th>(t)</th>
<th>(y)</th>
<th>(y2/y1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>162</td>
<td>3</td>
</tr>
</tbody>
</table>

- So this data seems to be exponential
- What equation best represents this data?
 \(b = y2/y1 = 3 \)
 \(k = y(0) = 2 \)
 \(y = 2 \cdot 3^t \)
Example 2:

• Determine if the following set of data is exponential

<table>
<thead>
<tr>
<th>t</th>
<th>y</th>
<th>y2 / y1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>73.5</td>
<td>0.98</td>
</tr>
<tr>
<td>2</td>
<td>72.03</td>
<td>0.98</td>
</tr>
<tr>
<td>3</td>
<td>70.5894</td>
<td>0.98</td>
</tr>
<tr>
<td>4</td>
<td>69.17761</td>
<td>0.98</td>
</tr>
<tr>
<td>5</td>
<td>67.79406</td>
<td>0.98</td>
</tr>
<tr>
<td>6</td>
<td>66.43818</td>
<td>0.98</td>
</tr>
</tbody>
</table>

• So the data seems to be exponential with \(b = 0.98 \) and \(k = 75 \)

Compound Interest:

• \(A = P \left(1 + \frac{r}{n}\right)^{nt} \)

 \(A \) is the amount of money at any time \(t \)
 \(P \) is the principal (initial investment)
 \(t \) number of years
 \(r \) is the interest rate
 \(n \) is the number of times compounded per year

• Example. Find the balance for $12,500 invested at 3\% for 3 years compounded quarterly

 \[A = 12500 \left(1 + \frac{0.03}{4}\right)^{4(3)} = 13,672.59 \]