Purpose: The purpose of this lab is to successfully use the concepts of ratio and proportion.
Outline: Use proportion to increase the serving size of a cookie recipe.
Content Objectives: Problem solving, proportion, percent, fractions.
Materials Needed: None (calculator optional).
Instructions: Answer the following questions. Show all work.

Background:

Ratio:
• The ratio has the forms \(\frac{a}{b} \) or \(a/b \) or \(a:b \)

• It represents a relationship between quantities \(a \) and \(b \).

• For example, the ratio of eighth graders at Middle School who are in the school band (40) to those who are not (110) can be represented by the ratio \(\frac{40}{110} \), \(40/110 \) or \(40:110 \)

• Question: What is the ratio of students who are not in the school band to those who are?

 Solution: \(110:40 \)

Recall Fractions:
• A fraction is the quotient of two quantities – a relationship between a part (\(a \)) and the whole (\(b \)). It is written as \(\frac{a}{b} \) or \(a/b \)

• By definition, a fraction is a ratio (but a ratio need not be a fraction)

• The numerator (number on top) indicates the number of parts of the whole (number on the bottom, or denominator) to be considered.

• For example, if a cake is cut into 12 equal pieces and 5 pieces remain, the part-whole meaning of a fraction is given as \(\frac{5}{12} \) of the cake remains.

• Question: In the band example in the previous section, what is the fraction of students who are in the band? Hint: you will first need to find the total number of students.

 Solution: \(\frac{40}{150} = \frac{4}{15} \)

Proportion:
• A direction proportion is a relation between two quantities whose ratio remains constant

• When \(A \) changes, then \(B \) changes by the same factor

• We express this mathematically by saying that \(A = kB \), where \(k \) is the constant of variation (any nonzero number).
• We can solve the above equation for k and find that $k = \frac{A}{B}$. So we see clearly that the ratio of A over B is constant (k).
• Example. When baking, use 2 cups of flour for every 1 cup of sugar
 Questions:
 – Are sugar and flour proportional in this example? Solution: yes
 – What is the constant of variation, k, in the equation $Sugar = k(\text{Flour})$ Solution: $\frac{1}{2}$
 – What is the ratio of flour to sugar? Solution: 2:1
 – What is the ratio of sugar to flour? Solution: 1:2
 – If you use 6 cups of flour, you will need how many cups of sugar? Solution: 3
 – If you use 8 cups of sugar you will need how many cups of flour? Solution: 16

Percent:
• A percent is a fraction or ratio in which the denominator is 100
• Questions:
 In the band example above, what percent of students are in band? Solution: 26.6%
 What percent are not? Solution: 73.3%
• Percents are useful because it has a built in ‘scale’ and is commonly used.

Converting Fractions-Decimals-Percents:
• Converting Decimals to Percent
 1. Move decimal point two places to the right (multiply by 100)
 2. Tack a % sign onto the end
 Example: 0.25 = 25%
 Example: 1.2 = 120%
• Converting Fractions to Percent (you must convert to a decimal first):
 1. Divide the fraction, it is now a decimal.
 2. Move decimal point two places to the right (multiply by 100)
 3. Tack a % sign onto the end
 Example: $\frac{1}{8} = 0.125 = 12.5$
 Example: $0.023 = 2.3$
• Converting Percent to Decimals
 1. Move the decimal point two places to the left (divide by 100)
 2. Remove the percent sign
 Example: 67% = 0.67

Percent of a Value, Discounts and Taxes:
• Recall that 'of' in math is multiplication. To find 'percent of' a number, change the percent to a decimal and multiply
 Example. Each year 8000 Americans suffer spinal cord injuries. 13% of these are due to sports injuries. How many spinal cord injuries are due to sports injuries each year?
 13% of 8000 = 0.13 (8000) = 1040 injuries due to sports
• **Sales Tax** is a tax rate (as a percentage) times purchase price

 Example. What is the tax of an item for $1260 if the sales tax is 6%?

 \[
 \text{tax} = 6\% \times 1260 = 0.06 \times 1260 = 75.60
 \]

• **Discounts** are percentage amounts taken off of the sales price

 Example. A CD player is originally $380, with 35% off. Find the purchase price

 \[
 \text{original price} - \text{discount} = 380 - 0.35 \times 380 = 380 (1 - 0.35) = 247
 \]

Activity:
You found the best recipe for chocolate chip cookies below, which makes 24 servings.

Absolutely the Best Chocolate Chip Cookies

INGREDIENTS:
- 1 cup butter flavored shortening
- 3/4 cup white sugar
- 3/4 cup brown sugar
- 2 eggs
- 2 teaspoons Mexican vanilla extract
- 2 1/4 cups all-purpose flour
- 1 teaspoon baking soda
- 1 teaspoon salt
- 2 cups milk chocolate chips

DIRECTIONS:

1. Preheat oven to 350 degrees F (175 degrees C). Grease cookie sheets.
2. In a large bowl, cream together the butter flavored shortening, brown sugar and white sugar until light and fluffy. Add the eggs one at a time, beating well with each addition, then stir in the vanilla. Combine the flour, baking soda and salt; gradually stir into the creamed mixture. Finally, fold in the chocolate chips. Drop by rounded spoonfuls onto the prepared cookie sheets.
3. Bake for 8 to 10 minutes in the preheated oven, until light brown. Allow cookies to cool on baking sheet for 5 minutes before removing to a wire rack to cool completely.

1. If you wanted to double the recipe, the ‘scale factor’ would be 2.
 a. This means you would need \(1 \times 2 = 2\) cups shortening
 b. Convert the rest of the recipe

 \[
 \begin{align*}
 &\text{2 cups butter flavored shortening} \\
 &\text{1 1/2 cups white sugar} \\
 &\text{1 1/2 cup brown sugar} \\
 &\text{4 eggs} \\
 &\text{4 teaspoons Mexican vanilla extract} \\
 &\text{4 1/2 cups all-purpose flour} \\
 &\text{2 teaspoon baking soda} \\
 &\text{2 teaspoon salt} \\
 &\text{4 cups milk chocolate chips}
 \end{align*}
 \]
2. You decide you want more! 36 servings.
 a. Determine the scale factor needed to go from 24 to 36 servings
 Note: This can be found by solving $24x = 36$ for x.
 b. Convert the rest of the recipe

 $1 \frac{1}{2}$ cup butter flavored shortening
 $1 \frac{1}{8}$ cup white sugar
 $1 \frac{1}{8}$ cup brown sugar
 3 eggs
 3 teaspoons Mexican vanilla extract
 $3 \frac{3}{8}$ cups all-purpose flour
 $1 \frac{1}{2}$ teaspoon baking soda
 $1 \frac{1}{2}$ teaspoon salt
 3 cups milk chocolate chips