Factoring Quadratics with Nonzero \(a \):

Students usually struggle with finding factors of the quadratic \(ax^2 + bx + c \) with nonzero \(a \). Remember that one can always use the quadratic formula. But one could find the factors in very clever ways…

As Presented in Class:

By example, let’s look at \(4x^2 -19x +12 \)

Step 1: Multiply \(a \) and \(c \).

\(4(12) = 48 \)

Step 2: “Rewrite” the equation by removing the \(a \) and replacing the \(c \)

\(x^2 -19x +48 \)

Step 3: Factor as usual

The factors of 48 are 1 & 48, 2 & 24, 3 & 16, 4 &12, 6 & 8

The two factors when added together to give you 19 are 3 & 16

\(x^2 -19x +48 = (x-16)(x-3) \)

Step 4: Of the numbers just found, find the factorization equivalent to \(a \) and ‘shift’ to \(a \’s \) place

\((x-16)(x-3) \)

16 has factors of 4 & 4. Shifting we get \((x-4)(4x-3) \)

Let’s look at \(2x^2 + x -6 \)

Step 1: Multiply \(a \) and \(c \).

\(2(-6) = -12 \)

Step 2: “Rewrite” the equation by removing the \(a \) and replacing the \(c \)

\(x^2 + x -12 \)

Step 3: Factor as usual

The factors of 12 are 1 & 12, 2& 6, 3 & 4

The two factors when subtracted give you 1 are 3 & 4

\(x^2 + x -12 = (x+4)(x-3) \)

Step 4: Of the numbers just found, find the factorization equivalent to \(a \) and ‘shift’ to \(a \’s \) place

\((x+4)(x-3) \)

4 has factors of 2 & 2. Shifting we get \((x+2)(2x-3) \)
This process works well until you have a problem similar to the one below…

Let’s look at $18x^2 + 27x + 10$
Step 1: Multiply a and c.
$18(10) = 180$
Step 2: “Rewrite” the equation by removing the a and replacing the c
$x^2 + 27x + 180$
Step 3: Factor as usual
The factors of 180 are 1&180, 2&90, 3&60, 4&45, 5&36, 6&30, 9&20, 10&18, 12&15
The two factors when added give you 27 are 12 & 15
$x^2 + 27x + 180 = (x+12)(x+15)$
Step 4: The difference now is that one number is not prime
We need to look at the factors of 12 and 15 when multiplied give you 18 (a) and 10 (c), respectively
12 has factors of 1&12, 2&6, 3&4
15 has factors of 1&15, 3&5
Looking at 2&6, 3&5… $2(5) = 10$ and $3(6) = 18$
Shifting we get $(3x+2)(6x+5)$

I recommend that you find a way that works for you and stick with it.
Some others are presented below.

Quadratic Formula:

$18x^2 + 27x + 10$

$x = \frac{-27 \pm \sqrt{27^2 - 4(18)(10)}}{2(18)} = \frac{-27 \pm 3}{36} = \frac{-2 \pm 5}{6}$

$\left(x + \frac{2}{3} \right) \left(x + \frac{5}{6} \right)$

$(3x+2)(6x+5)$

Always cheap and easy.

From Purple Math:

To factor a “hard” quadratic (with three coefficients not equal to one) visit the website
http://www.purplemath.com/modules/factquad2.htm

Using Algebra Tiles:

For teaching using algebra tiles, visit
http://regentsprep.org/Regents/math/faceq/TRFacEq.htm